В отличие от предыдущих задач, управляющие параметры
К целочисленному программированию относятся задачи размещения (производственных объектов), теории расписаний, календарного и оперативного планирования, назначения персонала и т. д.
Укажем два распространенных метода решения задач целочисленного программирования
Метод приближения непрерывными задачами.
В соответствии с ним сначала решается задача линейного программирования без учета целочисленности, а затем в окрестности оптимального решения ищутся целочисленные точки.Методы направленного перебора
. Из них наиболее известен метод ветвей и границ. Суть метода такова. Каждому подмножествуКаждый шаг метода ветвей и границ состоит в делении выбранного на предыдущем шаге множества Х С на два –
Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по—своему. Есть много модификаций этого метода. Однако менеджеру нет необходимости вникать в подробности, относящиеся к вычислительной математике. Вместе с тем он должен знать о возможностях, предоставляемых ему теорией оптимизации.
3.2.3. Теория графов и оптимизация
Один из разделов дискретной математики, часто используемый при принятии решений – теория графов. Граф – совокупность точек, называемых вершинами графа, некоторые из которых соединены дугами (дуги называют также ребрами). На только что введенное понятие графа «навешиваются» новые свойства. Исходному объекту приписывают новые качества. Например, вводится и используется понятие ориентированного графа. В таком графе дуги имеют стрелки, направленные от одной вершины к другой.
Ориентированный граф был бы полезен, например, для иллюстрации организации перевозок в транспортной задаче. В экономике дугам ориентированного или обычного графа часто приписывают числа, например, стоимость проезда или перевозки груза из пункта А (начальная вершина дуги) в пункт Б (конечная вершина дуги).
Рассмотрим несколько типичных задач принятия решений, связанных с оптимизацией на графах.
Задача коммивояжера
. Требуется посетить все вершины графа и вернуться в исходную вершину, минимизировав затраты на проезд (или минимизировав время).Исходные данные здесь – это граф, дугам которого приписаны положительные числа – затраты на проезд или время, необходимое для продвижения из одной вершины в другую. В общем случае граф является ориентированным, и каждые две вершины соединяют две дуги – туда и обратно. Действительно, если пункт А расположен на горе, а пункт Б – в низине, то время на проезд из А в Б, очевидно, меньше времени на обратный проезд из Б в А.
Многие постановки экономического содержания сводятся к задаче коммивояжера. Например:
– составить наиболее выгодный маршрут обхода наладчика в цехе (контролера, охранника, милиционера), отвечающего за должное функционирование заданного множества объектов (каждый из этих объектов моделируется вершиной графа);
– составить наиболее выгодный маршрут доставки деталей рабочим или хлеба с хлебозавода по заданному числу булочных и других торговых точек (парковка у хлебозавода).
Задача о кратчайшем пути
. Как кратчайшим путем попасть из одной вершины графа в другую? В терминах производственного менеджмента: как кратчайшим путем (и, следовательно, с наименьшим расходом топлива и времени, наиболее дешево) попасть из пункта А в пункт Б? Для решения этой задачи каждой дуге ориентированного графа должно быть сопоставлено число – время движения по этой дуге от начальной вершины до конечной.Ситуацию можно описать не только ориентированным графом с весами, приписанными дугам, но и таблицей (табл.7). В этой таблице двум вершинам – началу пути и концу пути – ставится в соответствие время в пути. В табл.7 рассматриваются пути без промежуточных остановок. Более сложные маршруты составляются из элементарных отрезков, перечисленных в табл.4.
Спрашивается в задаче: как кратчайшим путем попасть из вершины 1 в вершину 4?