Сюда же относится графическое «сглаживание» кривой и устранение случайных погрешностей наблюдений.
Б. Второй способ – это так называемая
B. Наконец, третий род обработки – это
Здесь надо предварительно обладать теорией явления или составить таковую на основании какой-либо гипотезы, чтобы на основании их составить дифференциальное уравнение, которому явление подчинено. Это уравнение надо затем решить точно или приближенно и сопоставить решение с результатами наблюдений и показать, в какой мере теоретические результаты сходятся с наблюденными; так поступают, например, в небесной механике.
Насколько я заметил по докладам Петра Петровича, он по большей части следует этому последнему пути, кладя в основу созданную им ионную теорию возбуждения.
Здесь надо различать самый метод исследования от изложения и опубликования его результатов. Возьмем для примера трех великих, – можно сказать, гениальных – математиков: Гаусса, Эйлера и Коши.
Свои исследования по эллиптическим функциям, главные свойства которых он открыл за 34 года до Абеля и Якоби, он не удосужился опубликовать в течение 61 года, и они были опубликованы в его «Наследии» примерно еще через 60 лет после его смерти.
Гаусс про наиболее торопливые из них выразился так: «Коши страдает математическим поносом». Неизвестно, не говорил ли Коши в отместку, что Гаусс страдает математическим запором?
Amicus Plato sed magis arnica Veritas[79]
. П. П. Лазарев делал доклады как в Отделении, так и в группе физики. Слушая его доклады, у меня невольно возникала мысль: следовало бы П. П. несколько ближе придерживаться выдержки Гаусса и не торопиться с опубликованием работ, так сказать в сыром, не то что не полированном, но даже вчистую не отделанном виде. Поэтому даже при слушании его докладов я часто замечал следующие недостатки.1. Отсутствие отчетливой, полной и точной формулировки гипотезы или вообще допущений, служащих основою для составления дифференциального уравнения.
2. Отсутствие в некоторых случаях отчетливой и ясной формулировки начальных условий для уравнений обыкновенных и начальных и граничных условий для уравнения в частных производных.
3. Отсутствие указаний на способы измерений и на непосредственные их результаты, не опуская ни одного из этих результатов без соответствующей оговорки, почему это сделано.
4. Отсутствие пояснений, сколько и какие параметры введены в самое уравнение, каким образом эти параметры определены и какова точность этих определений.