Читаем Нестандартные задачи по математике в 3 классе полностью

Ответ: 6.


Задача 74. Сколько разломов придется сделать, чтобы разломать эту шоколадку на отдельные кусочки?


Скорее всего, дети будут подсчитывать число разломов при некотором выборе порядка действий. Например, двумя разломами разделить шоколадку на три полоски, а потом каждую полоску шестью разломами разделить на отдельные 7 кусочков:

Получается 2 + 6 · 3 = 20 разломов. Или сначала шестью разломами разделить шоколадку на семь полосок по 3 куска в каждом, а потом двумя разломами разделить каждую полоску на отдельные кусочки:

Получается 6 + 2 · 7 = 20 разломов. Но нужно объяснить, что способов разлома существует много (сколько? — отдельная задача!). Возможен такой вариант:

А во-вторых, не странно ли совпадение ответов? В любом случае получится 20 разломов потому, что первоначально мы имеем 1 (большой) кусок шоколада, а в конце должны получить 21 (маленький) кусочек. А каждый разлом увеличивает число кусков на 1. Первый разлом — два куска, второй — три, и так далее. Двадцатый разлом — 21 кусок.

Ответ: 20.


Задача 75. 6 человек стоят у лифта 7-этажного дома. Они живут на разных этажах, от 2 до 7. Лифтер хочет доехать до одного какого-нибудь этажа, а там пусть идут пешком. Спуститься на один этаж — неудовольствие, подняться на один этаж — двойное неудовольствие. На каком этаже надо остановить лифт, чтобы сумма неудовольствий была наименьшей?


Смотри решение задачи 29. Если лифт остановится на этаже не ниже 4, то жилец 3 этажа должен идти пешком. Сумма неудовольствий при остановке на 6 этаже минимальна — равна 10 (два для жильца 2 этажа, три для жильца 3 этажа, два для жильца 4 этажа, одно для жильца 5 этажа и два для жильца 7 этажа). Желательно составить таблицу, аналогичную той, что дана в задаче 29. При остановке лифта на 7 этаже можно заставить жильца 3 этажа идти пешком для экономии электроэнергии.

Ответ: На 6 этаже.


Задача 76. Перерисуй по клеткам угол АВС.




Задача 77. Какими двумя цифрами оканчивается выражение

3573 · 3574 · 3575 · 3578 — 3579.


Уменьшаемое содержит множитель 3575, делящийся на 25, и множители 3574 и 3578, делящиеся на 2. Значит, уменьшаемое делится на 100, а все выражение оканчивается на 21.

Ответ: На 21.


Задача 78. Два кладоискателя хотят разделить добычу поровну, чтобы никто не мог сказать, что его обманули при дележе. У них нет никаких средств для измерения добычи или ее частей, кроме собственного глазомера. Как им быть?


Ответ: Один делит на две равные (по его мнению) части, а другой выбирает ту часть, которая ему больше нравится.


Задача 79.

В классе все дети изучают английский и французский языки. Из них 17 человек изучают английский, 15 человек — французский, а 8 человек изучают оба языка одновременно. Сколько учеников в классе?


Нарисуем два пересекающиеся круга:

Левый пусть обозначает изучающих английский, правый — изучающих французский. А в общей части будут те, кто изучает оба языка. По условию, в центральной части находятся 8 учеников. Значит, в левой части их 17 — 8 = 9, а в правой части их 15 — 8 = 7. Итого в классе 9 + 8 + 7 = 24 человека.

По вопросам эта задача решается так.

1) Сколько учеников изучает только английский? 17 — 8 = 9.

2) Сколько учеников изучает только французский? 15 — 8 = 7.

3) Сколько учеников в классе? 9 + 7 + 8 = 24.

Ответ: 24.


Задача 80. Какое число пропущено в следующем равенстве?


357 · (285 + 851) = 357 · 285 +___ · 851.

По распределительному свойству умножения, 357 · (285 + 851) = 357 · 285 + 357 · 851

Ответ: 375


81 - 90

Задача 81. 1 сентября 2001 г. — суббота. Какой день недели — 1 октября 2001 г.?


В данной задаче нужно выяснить:

1) сколько дней прошло с 1 сентября 2001 г. до 1 октября 2001 г. (так как в сентябре 30 дней, то с 1 сентября 2001 г. до 1 октября 2001 г. прошло 30 дней);

2) каким днем является день «суббота + 30 дней» (так как 28 дней — это ровно 4 недели, то «суббота + 28 дней» — снова суббота, а «суббота + 30 дней» — понедельник).

Ответ: 1 октября 2001 г был понедельник.


Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука