Читаем Нестандартные задачи по математике в 3 классе полностью

Можно оформить это решение по вопросам.

Сколько щенят — не ушастые? 12 — 8 = 4.

Сколько щенят — не кусачие? 12 — 9 = 3.

Сколько щенят обладает только одним из этих качеств (только кусачие или только ушастые)? 4 + 3 = 7.

Сколько щенят обладают обоими качествами (кусачие и ушастые одновременно)? 12 — 7 = 5.

Ответ: 5.


Задача 50. Илья стоит в хороводе. 5-й слева от Ильи тот же, что и 7-й справа. Сколько людей в хороводе, если их меньше 10?


Условия, данные в задаче, осуществимы, только если в число людей, стоящих между Ильей и еще одним, например Жорой, засчитывается Илья и, быть может, также и Жора. Это получится, если в хороводе 4 человека:

Их могло бы быть и двое, но двое — не хоровод.

Ответ: 4.


51 - 60

Задача 51. В день рождения Оли мама разложила на блюде пирожные в форме креста и сказала Оле: «Вот видишь, если считать пирожные с левого, верхнего или правого конца до низу, всегда получается восемь пирожных — как раз столько, сколько тебе исполнилось лет». Мама ушла готовить салат. А Оля подумала, что можно съесть несколько пирожных и так разложить оставшиеся, что мамино правило их счета будет выполняться, что же придумала Оля?


Оля уменьшила перекладину креста и увеличила нижний конец на столько же пирожных.

Ответ виден на рисунке.


Задача 52. Пятеро друзей обменялись фотографиями. Сколько для этого понадобилось фотографий?


Каждый должен подарить по четыре фотографии; значит, всего понадобится 4 · 5 = 20 фотографий. (Другой способ рассуждения: каждый должен получить по четыре фотографии; значит, всего понадобится 4 · 5 = 20 фотографий.)

Ответ: 20 фотографий.


Задача 53. В стакане чая растворили 10 г сахара. Маша выпила полстакана. Сколько сахара выпила Маша?


Так как сахар растворен в стакане, то можно считать, что в равных количествах чая содержится равное количество сахара. Поэтому в половине стакана содержится половина всего сахара, то есть 5 г.

Ответ: 5 г.


Задача 54.Какое число в задаче на вычисление пропущено: (483 — 23) : __ — 5200 : 26?


Во-первых, должно быть осуществимо деление числа 483 — 23 = 460 на пропущенное число, а во-вторых, результат этого деления должен быть не меньше, чем число 5200: 26 = 200.

Ответ: 1 или 2.


Задача 55. Имеются 5 монет. Три из них имеют массу по 10 г каждая. Об остальных двух монетах известно, что они имеют одинаковую массу, а на вид не отличаются от 10-граммовых. Как двумя взвешиваниями на чашечных весах без гирь найти хотя бы одну монету в 10 г?


Надо сравнить массы любых двух монет. Потом надо сравнить массы еще двух монет. Если в обоих случаях весы уравновесились или в обоих случаях не уравновесились, то пятая монета — 10-граммовая. Если в одном из случаев весы уравновесились, а в другом не уравновесились, то уравновесившиеся монеты — 10-граммовые.

Ответ: Надо сравнивать массы монет, кладя на каждую чашу весов по одной монете.


Задача 56. Перерисуй по клеткам угол АВС:



Задача 57.

Какими двумя цифрами оканчивается выражение 2539 + 4873 + 2965 + 8427 + 6461?


Крайние слагаемые дают число, делящееся на 100, также и вторые от концов. Значит, сумма оканчивается на 65.

Ответ: 65.


Задача 58. Компьютер написал все числа от 1 до 1000. Сколько цифр написал компьютер?


9 однозначных чисел написано 9 цифрами, 90 двузначных написано 180 цифрами, 900 трехзначных 2700 цифрами, число 1000 — четырьмя цифрами, итого 2893 цифры.

Ответ: 2893.


Задача 59. Разместить числа от 0 до 8 в клетках квадрата, чтобы суммы чисел по всем горизонталям, вертикалям и диагоналям равнялись между собой. Почему число 4 должно стоять в центре квадрата?


Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука