– Мы туда закладывали энергии связи нуклонов, массы исходных и конечных атомов, то есть массы всех частиц, которые туда входят. И при этом программа была построена так, словно кулоновского барьера нет. Физика туда не вкладывалась. Это так называемое монтекарлирование. Стохастическая программа. Машина работала в поте лица, и те спектры, которые я показывал, она получала за неделю-две расчетов, к компьютеру подойти было невозможно! То есть машина очень быстро перебирала все варианты конечных-начальных состояний атомов. До тех пор, пока конечное ядро не получалось стабильным. И она его вкладывала в ячейку памяти. Не хватит ведь никаких мозгов перебрать во всей таблице элементов, зная энергии связи и дефекты масс, все варианты таким образом, чтобы с огромной точностью в миллионные доли электронвольта все совпало так, чтобы конечное ядро оказалось стабильным. Для этого и требуется монтекарлирование. Гигантский объем подсчетов!.. Вот и выходит, что если даже не вкладывать физику в процесс, а просто предположить, что, во-первых, все законы сохранения соблюдаются и просто нет кулоновского барьера, а во-вторых, конечный результат должен состоять из стабильных ядер, то получается конечный результат, полностью подтверждающийся экспериментом.
– Хорошо, но вы же говорили, что в одинаковых экспериментах в восьми ячейках получались разные результаты?!
– Да-а! – Ковалев внимательно посмотрел на меня, словно решая, говорить мне или не говорить. Потом решился и сказал. – Потому что есть еще зависимость от ориентации магнитного поля Земли и зависимость от времени суток. Но в программе этого не было, там усреднение.
– Но потом-то вы нашли свою физику процесса трансмутации? – посмотрел я в глаза Владимиру Дмитриевичу. – Ту самую новую физику, о которой Жорж Лошак мечтал, хлопая вас по плечу? Помните, вы рассказывали, как он грустно говорил, мол, занимаемся сто лет электричеством, а ни хрена не знаем, что такое заряд.
– Да. Нашли. Оказывается, все это давным-давно было описано в восточной философии. И теперь я могу сказать, что такое заряд.
– И что же такое заряд?..
Ковалев устало махнул рукой:
– Это очень долго рассказывать. Давайте пока отложим заряд в сторону и закончим нашу линию повествования – долгий рассказ про других людей, которые неожиданно столкнулись с данным явлением. Вот, например, посмотрите, эту научную работу перед публикацией рецензировал я, опять же по просьбе Минпромнауки… Фамилия автора – Солин. Человек со сложной судьбой, он работал главным инженером на уральском гигантском комбинате, где шла очистка циркония до котельной чистоты, а котельная чистота – 10-8
грамм на грамм, потому что цирконий является оболочкой ТВЭЛов[12]… Солина, между прочем, уволили после этой публикации.ТВЭЛы делают из циркония. У циркония очень низкое сечение реакции захвата, поэтому он, собственно, и был выбран для этой цели. А что такое сечение реакции? Это вероятность прохождения реакции, точнее, вероятность того, что летящая частица попадет в некую область пространства вокруг другой частицы, с которой она должна прореагировать. Этот круг может быть намного больше, чем диаметр самой бомбардируемой частицы! Почему? Потому что существуют квантовые эффекты: обе летящие друг к другу частицы на самом деле занимают гораздо большее пространство, чем их классический диаметр, они по пространству размазаны в полном соответствии со своими волновыми функциями, которые и описывают вероятность нахождения частицы в том или ином месте.
Сечение реакции измеряется в барнах. 1 барн равен максимальному сечению атомного ядра: 1 барн = 10–28
м2 = 10–24 см2 = 100 квадратных фемтометров (примерный размер атомного ядра).На рисунке показано, как выглядит эффективное сечение протона с точки зрения налетающего на него протона, фотона и нейтрино
Пояснение к рисунку. Если к протону летит другой такой же, он «видит» перед собой то же самое, что представляет из себя и сам. И потому сечение их реакции равно геометрическому сечению протона… если летит фотон электромагнитного излучения, он «видит» только таких же, как сам, то есть заряженные кварки, из которых сделан протон. Поэтому фотону протон кажется полупрозрачным, эффективное сечение мало́… Если же налетает глупое нейтрино, являющееся результатом распадного, то есть слабого взаимодействия, оно «видит» не кварки, а передатчики слабого взаимодействия между кварками – векторные бозоны. И оттого для нейтрино протон практически прозрачен, эффективное сечение рассеяния нейтрино на протоне крайне мало́.
Вот еще отличный и удивительный вместе с тем пример: сечение захвата медленного нейтрона ядром атома бора-10 превышает геометрическое сечение ядра бора в десятки тысяч раз! То есть стоит нейтрону неспешно проехать в десяти тысячах барнах от ядра, как ядро бора-10 его схватит. Это как если бы Солнце было ядром, то оно поглотило бы Юпитер и все прочие планеты, причем с большим запасом.