Читаем Опционы полностью

Обозначим через S = {s1, s2…, sm} множество всех рассматриваемых акций. Двигаясь по истории из прошлого в будущее, будем каждый день T строить для каждой акции

si из S множество опционных комбинаций по следующим правилам. Определим три ближайшие даты экспирации опционов. Для каждой даты экспирации, отстоящей от T на определенное количество торговых дней в будущее, возьмем множество всех опционов пут и колл на акцию si, имеющих страйки, удаленные от текущей цены акции не более чем на 10 %. Материалом для формирования портфеля будет множество коротких комбинаций типа стрэддл и стрэнгл, построенных с соблюдением следующих условий. При построении стрэнглов допускаются только те варианты, для которых страйк пута меньше страйка колла. Стрэддлы и стрэнглы состоят из равного числа опционов пут и колл.

В результате для каждого дня прошлого и каждой из трех ближайших экспираций получается широкий набор опционных комбинаций. Для каждой из них подсчитаем значение математического ожидания прибыли по логнормальному распределению. Выберем те комбинации, у которых значение этого критерия больше 1 % от объема инвестиций. Будем строить портфель из элементов этого множества путем распределения $100 000 (объем средств, выделенных на первом этапе процесса управления капиталом). Капитал будем распределять по одному из семи показателей, описанных в предыдущих разделах:

1) эквивалент позиции в акциях;

2) обратно пропорционально премии;

3) математическое ожидание прибыли на основе логнормального распределения;

4) вероятность получения прибыли на основе логнормального распределения;

5) дельта;

6) асимметрия;

7) VaR.


На дату экспирации будем фиксировать прибыль или убыток каждого портфеля.

Сравнительный анализ этих показателей будет фокусироваться на следующем вопросе: насколько портфели, сформированные с помощью различных показателей, отличаются друг от друга с точки зрения их доходности. Другими словами, в какой степени доходность портфеля зависит от показателя, с помощью которого распределялся капитал между элементами портфеля.

В предыдущем разделе для того, чтобы выразить степень различия портфелей с точки зрения их внутренней структуры, мы использовали коэффициент вариации весов отдельных элементов портфеля. Поскольку вес портфеля всегда положителен, c применением коэффициента вариации не возникает проблем. Однако в этом разделе мы будем сравнивать различные методы распределения капитала на основе реализовавшейся прибыли портфеля, которая может быть отрицательной (убыток). Поскольку в данном случае коэффициент вариации – вычисляемый как отношение стандартного отклонения (всегда положительно) к среднему (положительно или отрицательно) – может оказаться отрицательной величиной, его применение для оценки изменчивости (степени различия портфелей) невозможно. Поэтому нам придется выражать изменчивость с помощью стандартного отклонения, не нормированного на величину среднего.

Чем чреват такой отказ от нормировки? Из практики известно, что во многих случаях стандартное отклонение имеет положительную корреляцию со средним. В таких случаях тренды, наблюдаемые в динамике изменчивости (или другие зависимости), могут по существу быть трендами среднего, а не изменчивости. Нормировка же позволяет устранить этот недостаток. Поэтому, прежде чем приступить к нашим исследованиям (в которых мы вынуждены отказаться от нормировки), необходимо установить, существует ли в нашем случае взаимозависимость между средним и стандартным отклонением. Использование ненормированного стандартного отклонения будет допустимо только в том случае, если такой зависимости не существует.

Для того чтобы установить, существует ли прямая зависимость между средним и стандартным отклонением, мы рассчитали их значения на каждую дату создания портфелей. Среднее и стандартное отклонение вычислялись по величине прибыли семи портфелей, сформированных по семи разным показателям. На основе полученных данных мы провели регрессионный анализ, результаты которого представлены на рис. 4.4.1. Как следует из рисунка, прямая зависимость между средним и стандартным отклонением в данном случае не наблюдается. Более того, существует слабо выраженная обратная зависимость. Несмотря на то что обратная зависимость статистически значима (t = 18,4, p < 0,001), ее влиянием можно пренебречь в силу того, что коэффициент детерминации имеет очень низкое значение (R2 = 0,05). Таким образом, в нашем исследовании допустимо использовать в качестве меры изменчивости стандартное отклонение, не нормированное на величину среднего.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело