Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

При N → ∞ это выражение стремится к 2(n − 1)1/2 — конечному пределу. Это показывает, что и предел суммы средних конечен.

Мы можем оценить это число, сложив несколько первых членов ряда и приблизив «остаток» суммы соответствующим интегралом, что дает приблизительно 0.315. После 10 или, скажем, 20 членов формула Стирлинга очень точна, и остаток, оцениваемый интегралом, весьма мал. Автор при расчете использовал 18 слагаемых. Число 0.315 есть среднее число возвращений частицы в начало координат. Следовательно, 1/Q = 1 + 0.315, и мы получаем Q = 1/1.315 ≈ 0.761.

Поэтому вероятность P того, что частица вернется в начало координат, приблизительно равна 0.239.

Для читателей, знакомых с результатами о случайных блужданиях, где частица сдвигается в центры граней окружающего куба, а не в его вершины, известно, что доля возвращающихся частиц равна приближенно 0.35[11]

, так что для восьми равновероятных шагов шансы на возвращение значительно меньше, чем для шести.

Та же техника в случае 4-мерного блуждания, когда для определения вектора, на который сдвигается частица, бросают четыре монеты, показывает, что вероятность возвращения снижается до 0.105.

53. Решение задачи об игле Бюффона

Это, пожалуй, наиболее известная задача, связанная с геометрическими вероятностями. На рис. 24 показаны положения иглы, при которых она касается одной из прямых. Из соображений симметрии понятно, что достаточно рассмотреть лишь промежуток между какими-нибудь двумя прямыми.

Рис. 24. Иглы, обозначенные пунктиром, пересекают одну из прямых, а проведенные сплошной линией — касаются одной из прямых.

Положение иглы вдоль вертикали не играет здесь никакой роли, так как ее сдвиг вверх или вниз не влияет на пересечение соответствующей прямой. Ясно также, что положение иглы определяется углом между направлением иглы и прямой и расстоянием от центра иглы до ближайшей прямой. Центр P в предположении его равномерного распределения может занять любое положение между прямыми с одинаковой вероятностью, и при фиксированном значении угла θ вероятность того, что игла пересечет одну из прямых, равна 2x/2a

, так как для пересечения необходимо, чтобы центр иглы упал на расстоянии, меньшем, чем x, от какой-нибудь из прямых (см. рисунок). Мы можем считать, что угол θ равномерно распределен на отрезке от 0 до π/2 (или от 0° до 90°). Действительно, если игла пересекает прямую при угле θ, то это положение вещей сохранится и при угле π − θ (или 180° − θ). Итак, нам надо найти среднее значение величины x/a или, так как x = l∙cos θ, среднее величины (l/a
)∙cos θ. Это математическое ожидание вычисляется интегрированием

Число π/2 в знаменателе левой части предыдущего равенства является нормирующим множителем для распределения угла θ, 0 < θ < π/2. Так как длина иглы равна 2l, то

P(игла пересечет прямую) = 2×(длина иглы)/(длина окружности радиуса α).

Чем объяснить известную популярность этой задачи? Автор считает, что это связано с возможностью экспериментального определения числа π. Плоскость с параллельными прямыми может быть реализована как разграфленная бумага. Если расстояние между прямыми равно длине иглы, то число π может быть оценено как 2/(относительная частота пересечений). Большой точности при этом способе определения π достичь трудно, оценка всегда является рациональным числом, но все же сама возможность определения такой мировой постоянной, как π, опытным путем представляется весьма интересной. Более удобный метод вычисления числа π будет предложен в задаче 55.

Любопытные задачи на подсчет геометрических вероятностей имеются в книге Кендалл М., Моран П., Геометрическая вероятность, «Наука», 1972 г.

54. Решение задачи об игле Бюффона с вертикальными и горизонтальными прямыми

Среднее число пересечений вертикальных прямых равно вероятности пересечения одной такой прямой.

Из предыдущей задачи (a

= 1/2) известно, что эта вероятность равна 4l/π. Среднее число пересечений вертикальных прямых также равно 4l/π, что можно заметить, поворачивая нашу решетку на 90°. Среднее суммы равно сумме средних, и ответ равен 8l/π.

Если игла единичной длины, то среднее число пересечений равно 4/π ≈ 1.27.

До этого предполагалось, что игла короче, чем расстояние между прямыми. В следующей задаче это условие не выполнено.

55. Решение задачи о длинной игле

Разделим мысленно иглу на n кусков одинаковой и меньшей единицы длины. При бросании каждого из этих кусков среднее число его пересечений было найдено в предыдущей задаче. Таким образом, согласно уже упоминавшейся теореме о среднем суммы, среднее число пересечений равно 4∙(исходная длина)/π. Тот факт, что игла подбрасывается вся целиком, а не кусочками, не имеет здесь значения.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии