Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Есть два уровня понимания π – как учили в школе и как учили в институте. В школе – что это отношение длины окружности к диаметру. А что такое окружность – это множество точек находящихся на расстоянии R от центра. А что такое точка – некое умозрительное понятие, в природе точек нет и непрерывных кривых тоже нет. Если мы, например, нарисуем на бумаге, якобы, непрерывную кривую и посмотрим на нее в микроскоп, то увидим, что на самом деле кривая сильно разрывна т.к. состоит из атомов, точек на ней нет и т.д. Поэтому понятия диаметра окружности и ее длины – чисто умозрительные. А почему тогда уравнения Максвелла, теорема Пифагора, дивергенция, дифуры и т.д. хорошо работают? Или например, когда мы описываем воду в океане уравнениями гидродинамики, то это хорошо работает. Потому что в приближении когда пренебрегаем размерами атомов и представляем вещество как нечто непрерывное, то в этом приближении есть бесконечно малые, можно дифференцировать и т.д.

Теперь о том как учили в институте. Все понятия типа π, и е не должны исходить из наших геометрических представлений, а только из матанализа. Здесь ВСЕ функции которые мы учили ОПРЕДЕЛЯЮТСЯ их разложением в ряд Тэйлора. Например, exp(x) определяется своим рядом Тэйлора, cos(x), sin(x) – своими рядами Тэйлора и т. д., а е определяется бесконечным рядом Тэйлора для exp(1). Отсюда сразу следует, что exp(ix) = cos(x) + isin(x)

. А если мы возьмем ряд Тэйлора для arccos(x) или arcsin(x), то π =arccos(-1) или π =2arcsin(1), т. е., π определяется своим бесконечным рядом. Формула exp(2iπ)=cos(2π)+isin(2π)=1 получается только из манипуляций с бесконечными рядами Тэйлора. Поэтому если думать, что в ПРИНЦИПЕ можно посчитать сколько угодно знаков для π и е, то можно считать эти знаки до посинения. А если мы все же согласимся с тем, что, например, число атомов во вселенной конечно и нельзя построить компьютер с бесконечным числом бит, то придется признать, что π и e не такие фундаментальные как думают. Квантовая теория полностью изменила наше мировосприятие. В ней нельзя сказать, что какая-то величина "на самом деле" существует, но никак не может проявиться – если она не может проявиться – то значит она не существует.

Так что, когда переходим к пределу p→∞, ћ→0 и пренебрегаем размерами атомов, то стандартный смысл дифференциальных уравнений, π, е и т. д восстанавливаются.

11.5. Гравитация как кинематическое следствие конечности мира

В нерелятивистской классической механике, закон всемирного тяготения получается, если потенциальную энергию взаимодействия двух частиц с массами m1 и m2

выбрать в виде – Gm1m2/r, где r – расстояние между частицами, а G – гравитационная постоянная. В ОТО закон всемирного тяготения получается в частном случае когда есть две нерелятивистские частицы. В квантовой гравитации пытаются объяснить гравитацию как следствие обмена виртуальными гравитонами. Эта теория еще не закончена (и непонятно, будет ли когда-либо закончена) т.к. она неперенормируемая и, по крайней мере в существующих подходах, непонятно как в ней устранить расходимости.

Стандартная догма такая, что гравитация – четвертое взаимодействие, которое надо объединить с сильным, электромагнитным и слабым взаимодействием. Сильное взаимодействие – обмен виртуальными глюонами, электромагнитное – обмен виртуальными фотонами, слабое – обмен виртуальными W и Z бозонами, а гравитационное – обмен виртуальными гравитонами. Как описано в параграфе 9.2, считается, что наблюдение двойных пульсаров дает косвенное подтверждение существования гравитонов, а недавний эксперимент LIGO – прямое. Однако, как отмечено в этом параграфе, такие утверждения очень проблематичны.

Мой подход к гравитации основан на следующих принципах. Во-первых, как описано в параграфе 9.6, алгебра операторов более фундаментальна чем пространство. Во-вторых, как описано в параграфе 11.2, де Ситтер симметрия более фундаментальна чем Пуанкаре симметрия. Наконец, как описано в параграфе 11.4, фундаментальная квантовая теория должна строиться над конечной математикой.

Рассмотрим вначале теорию, основанную на обычной алгебре де Ситтера, т. е., без привлечения конечной математики. Пусть есть две свободные нерелятивистские частицы с массами m1 и m2. В Пуанкаре инвариантной теории масса такой двухчастичной системы равна (в системе единиц c=1)

M=m

1 + m2 + q2/2m12

где q – относительный импульс, а m12=m1m2/(m1

+m2) – приведенная масса. Поэтому масса двухчастичной системы зависит только от относительного импульса, но не от расстояния r между частицами и не может быть меньше чем m1 + m2. В частности, в таком подходе нельзя получить гравитационную поправку —Gm1m2/r к массе. В анти-де Ситтеровской симметрии масса двухчастичной системы тоже не может быть меньше чем m1 + m2 и гравитационную поправку к массе тоже получить нельзя.

Но в теории инвариантной относительно алгебры де Ситтера so(1,4)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии