Читаем Прайс-менеджмент. Стратегия, анализ, решение и реализация полностью

Обзор

Ниже мы обобщим выводы относительно ценового позиционирования с функцией Гутенберга «цена-отклик». Могут иметь место два локальных максимума прибыли. Первый находится в точке премиальной цены; второй, если он есть, находится в точке заметно более низкой цены. Непременными условиями максимума прибыли на низком ценовом уровне являются сильный излом функции «цена-отклик» и низкие маржинальные затраты. За счет потенциального наличия двух максимумов прибыли измерение и анализ функции «цена-отклик» должны охватывать большой ценовой диапазон. Если брать только одну цену там, где маржинальный доход равен маржинальным затратам, это не гарантирует максимальной прибыли. Нужно выяснить, какой из двух максимумов прибыли является глобальным.

5.4.4. Ценовая оптимизация на олигопольном рынке

В случае олигополии компания должна учитывать реакцию конкурентов. Это значительно осложняет принятие ценовых решений. В целом при олигополии нет определенной оптимальной цены. Цена вместо этого зависит от предположительного поведения конкурентов. Проблема состоит в том, чтобы установить цену, которая окажется оптимальной после отклика конкурентов. Чтобы осуществить это эффективно, нужно брать в расчет функции реакции конкурентов, а не функцию «цена-отклик» потребителей:



Функция реакции ri описывает, как олигополист i отреагирует на ценовые действия конкурента j. Теоретически можно обосновать различия индивидуальных функций реакции, поскольку конкуренты действительно могут реагировать по-разному. Однако определять подобные детализированные функции эмпирическим путем непрактично. Подобно прогнозированию функций «цена-отклик», имеет смысл использовать укрупненную форму функции реакции. Тогда средняя цена конкурентов будет служить пояснительной переменной с точки зрения олигополиста j. Получаем формулу



Отсюда необходимо определить только одну функцию реакции. Но это также значит, что любая дифференцированная реакция конкурентов не будет учтена. Компромиссным решением между функциями (5.4) и (5.5) будет сгруппировать бренды, демонстрирующие сходные реакции (например, магазинные бренды и заводские или брендированные товары и неизвестные марки). Как правило, обычно выбирают самую простую форму. Следуя данной логике, мы используем упрощенную версию.

Включаем функцию реакции (5.5) в функцию «цена-отклик» (без индекса продукта):



Получаем:



Объем продаж q здесь зависит от собственной цены p и конкурентной цены p, которая в свою очередь зависит от собственной цены. Чтобы определить оптимальную цену, мы дифференцируем функцию прибыли относительно p и устанавливаем производную, равную нулю:



Фундаментальный принцип «маржинальный доход = маржинальные затраты» остается при олигиполии неизменным. Предприняв дополнительные шаги, мы получаем следующую формулу оптимальной цены²:



Эластичность реакции обозначает процентное изменение цены конкурентов, когда собственная цена меняется на 1 %.

В структурном смысле условие оптимальности напоминает формулу Аморозо – Робинсона (5.2). Однако на олигопольном рынке надбавка к маржинальным затратам определяется не только прямой ценовой эластичностью, но скорее «скорректированной» эластичностью, которая предусматривает конкурентную реакцию (e + sek). Выражение (e + sek) можно интерпретировать как «ценовую эластичность после конкурентной реакции».

Чтобы определить надбавку, нужно знать не только прямую ценовую эластичность, но и перекрестную эластичность и эластичность реакции.

Здесь мы снова отмечаем, что уравнение (5.8) не является решением для p*, поскольку все выражения в правой части уравнения могут зависеть от p*.

Перекрестная ценовая эластичность конкурирующих продуктов положительная. Эластичность реакции обычно бывает нулевой или положительной, то есть конкуренты либо вообще никак не отреагируют, либо сдвинут цены в том же направлении, что и инициатор изменения. В последнем случае оптимальная цена, с учетом реакции конкурентов, равна цене (или превышает ее), в которой реакция в расчет не принимается, а решения основаны на «монополистической» формуле Аморозо – Робинсона (5.2). Если эластичность реакции равна нулю, формула (5.8) удовлетворяет отношению Аморозо – Робинсона.

Перейти на страницу:

Похожие книги