Я учился в подготовительном классе лицея Людовика Великого. Мне преподавали серьезную, официальную математику во всей пышности аксиом, определений, предположений, теорем, доказательств, символов и формул. Все это мне преподавали в логическом и структурированном виде. Меня учили оформлять математику строго и точно.
И все это время, не осмеливаясь никому рассказать, я продолжал цепляться за свою наивную интуицию. Это совершенно не работало и приводило к очень странному результату.
Рисунки в моей голове напоминали мои же каракули в детском саду, когда я рисовал человечков с руками и ногами прямо из головы, не осознавая, что забыл какую-то часть тела. Точнее, так: я осознавал, что забыл часть тела, и она определенно важна, но осознавал я это смутно и невнятно и не мог назвать, чего же не хватает. Я знал, что тут что-то не так, но не мог сказать что.
Помню, однажды я позвал воспитательницу и сказал, что на моем рисунке чего-то не хватает. Она ответила, что все в порядке и рисунок очень милый. У меня возникло впечатление, что ей на меня наплевать.
Мне совершенно не хотелось повторять этот опыт и поднимать руку, чтобы сказать, что у меня проблема, потому что образы в моей голове получаются неправильными. Мне совершенно не хотелось выставлять себя на всеобщее посмешище. Рефлекторно я старался воспринимать эти мысленные образы как мысли-паразиты, от которых нужно было избавиться.
Если бы секрет успеха в подготовительном классе лицея Людовика Великого заключался в том, чтобы мыслить как четырехлетка и малевать в голове каракули, все бы об этом знали.
Настала пора подрасти. Я должен был научиться мыслить логически и структурированно, серьезными и сложными словами, а не представлять себе разные вещи в упрощенном и образном виде. Надо было повзрослеть.
Трубы потоньше или потолще
В то время я еще верил, что логика нужна, чтобы думать. У меня не получалось думать логически, но я считал, что проблема во мне. Я полагал, что сумею решить эту проблему, изучая математику, и что первый этап заключается в том, чтобы избавиться от этих наивных и неверных мысленных образов.
Но среди всех этих неверных образов, среди всех посторонних мыслей, от которых я стремился избавиться, я с удивлением обнаружил образ, не настолько ложный, как все остальные.
При изучении векторных пространств также изучаются понятия
Это было не таким уж большим достижением. Оставалось еще множество тем и множество упражнений, которые мне не давались. Но упражнения по этой теме я не просто умел решать – они стали настолько же очевидными, как то, что 1 000 000 000 – 1 = 999 999 999. Настолько очевидными, что казалось нелепым, что их вообще задают, и еще более нелепым – что есть люди, которые не умеют их решать.
Образ труб упрощал мне жизнь, но откуда он взялся? Предполагается, что я и должен был так действовать? А что происходит в голове у других? Как они себе представляют математические понятия?
Я помню, как растерянно смотрел на одноклассников, вглядываясь в их лица в попытке найти признаки того, что происходило у них в голове.
И я в замешательстве осознал, что не имею об этом ни малейшего представления.
Огромная проблема
Никто не объяснил нам, что должно происходить у нас в голове, и это стало огромной проблемой.
Я понимал, что есть два принципиально разных способа воспринимать образование, которое мы получали, и эти два подхода несовместимы друг с другом.
Первый подход заключается в том, чтобы считать математику видом знания. Математические утверждения – это информация, которую надо знать и уметь воспроизводить. Нужно учить определения, учить теоремы, учить доказательства.
Второй заключается в том, чтобы отказаться учить. Он подходит к математике как к чувственному опыту. Единственная задача математических утверждений – вызывать к жизни мысленные образы, и только эти мысленные образы позволяют понимать. Как только у нас получаются правильные мысленные образы, все остальное становится очевидным.
Эти два подхода несовместимы, потому что подразумевают совершенно разные мысленные действия. Выучить наизусть, согласиться поверить тому, чего не понимаешь, – все это есть только в первом подходе. Во втором мы смотрим на то, чего не понимаем, с подозрением и недоверием: «Даже так? Вот так оно и есть? Невероятно! Но как это возможно? Как мне удается это увидеть?»
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии