Читаем Рациональность. Что это, почему нам ее не хватает и чем она важна полностью

Участвовавшие в исследовании врачи, ознакомившись с этими цифрами, чаще всего давали ответ в диапазоне от 80 до 90 %[217]. Правило Байеса позволяет вычислить верный ответ: 9 %. Да-да, профессионалы, которым мы вверяем свою жизнь, не справляются с простейшей задачей интерпретации результатов анализа, причем ошибаются по-крупному. Они убеждены, что у пациентки рак с вероятностью почти 90 %, хотя на самом деле с вероятностью 90 % рака у нее нет. Представьте вашу эмоциональную реакцию на первую цифру, а потом — на вторую и подумайте, как бы вы в тех и других обстоятельствах оценивали свои перспективы. Вот почему любому человеку не помешает как следует разобраться в теореме Байеса.

Чтобы принять сопряженное с риском решение, необходимо оценить шансы («Есть ли у меня рак?») и взвесить последствия каждого из вариантов («Если у меня рак, а я не буду лечиться, я умру; если же у меня нет рака, а я соглашусь на хирургическое вмешательство, мне придется испытать боль и подвергнуться ненужной уродующей операции»). В главах 6 и 7 мы порассуждаем о том, как надо принимать решения с учетом их последствий, если нам известны вероятности; но в любом случае начинать нужно с вычисления самих вероятностей: какова вероятность, что некое обстоятельство истинно в свете имеющихся доказательств?

Как бы ни пугало вас слово «теорема», правило Байеса не очень сложно, и, как мы убедимся в конце главы, его вполне можно прочувствовать интуитивно. Величайшая догадка его преподобия Томаса Байеса (1701–1761) состоит в следующем: уровень доверия гипотезе можно количественно выразить в виде вероятности. (Это субъективистское понимание слова «вероятность», с которым мы познакомились в предыдущей главе.) Пусть Р(гипотеза) — это вероятность гипотезы, другими словами, степень нашей уверенности в ее истинности. (Если говорить о медицинском диагнозе, гипотеза — это утверждение, что пациент болен.) Очевидно, что доверие любой идее должно основываться на доказательствах. Языком теории вероятности можно сказать, что доверие должно обусловливаться доказательством. Следовательно, нас интересует вероятность гипотезы при условии наличия имеющихся данных, то есть Р(гипотеза|данные). Эту вероятность еще называют

апостериорной, или уверенностью в гипотезе после изучения доказательств.

Усвоив этот теоретический момент, вы разберетесь и с правилом Байеса, поскольку это всего лишь формула вычисления условной вероятности, знакомая нам из предыдущей главы, примененная к уверенности и доказательству. Мы помним, что вероятность А при условии В равна вероятности (А и В), деленной на вероятность В. Следовательно, вероятность гипотезы с учетом имеющихся данных (которая нам и нужна) — это вероятность конъюнкции гипотезы и данных (скажем, пациентка больна и анализ у нее положительный), деленная на вероятность данных (общую долю пациентов с положительным тестом, больных и здоровых). Запишем это в виде равенства: Р(гипотеза|данные) = Р(гипотеза И данные)/Р(данные). Еще одно напоминание из главы 4: вероятность (А и В) равна вероятности А, умноженной на вероятность В, при условии А. Подставив все это в равенство, получаем правило Байеса:



Что это значит? Вспомним, что Р(гипотеза|данные), левая часть равенства, — это апостериорная вероятность — степень доверия гипотезе, уточненная после изучения доказательств. Например, уверенность в диагнозе после того, как стал известен результат анализа.

Р(гипотеза) в правой части равенства — это априорная вероятность, то самое «априори», степень доверия гипотезе до изучения данных. Насколько гипотеза убедительна или общепринята? Что нам пришлось бы предположить, не будь у нас тех новых данных, что теперь имеются? Если говорить о болезни, это была бы ее распространенность в популяции, то есть базовая оценка.

Р(данные|гипотеза) — это правдоподобие. «Правдоподобие» в байесовском смысле — не синоним вероятности; это оценка возможности появления данных, если гипотеза верна[218]. Если некто болен, насколько правдоподобно, что у него проявится некий симптом или анализ окажется положительным?

И наконец, Р(данные) — это полная вероятность появления данных во всех случаях, независимо от того, верна гипотеза или неверна. Ее иногда называют маргинальной вероятностью — не потому, что она незначительна, но потому, что суммарный итог по каждой строке (или столбцу) принято было записывать на полях (от margin, «поле страницы»), то есть это суммарная вероятность получения данных при условии, что гипотеза верна, и при условии, что она неверна. Легче запомнить другой термин — «распространенность данных». В случае медицинского диагноза это доля всех

пациентов (как больных, так и здоровых) с определенным симптомом или с положительным результатом анализа.

Заменив алгебраическое равенство удобной для запоминания схемой, получаем:



Перейти на страницу:

Все книги серии Книжные проекты Дмитрия Зимина

Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука
Скептик. Рациональный взгляд на мир
Скептик. Рациональный взгляд на мир

Идея писать о науке для широкой публики возникла у Шермера после прочтения статей эволюционного биолога и палеонтолога Стивена Гулда, который считал, что «захватывающая действительность природы не должна исключаться из сферы литературных усилий».В книге 75 увлекательных и остроумных статей, из которых читатель узнает о проницательности Дарвина, о том, чем голые факты отличаются от научных, о том, почему высадка американцев на Луну все-таки состоялась, отчего умные люди верят в глупости и даже образование их не спасает, и почему вода из-под крана ничуть не хуже той, что в бутылках.Наука, скептицизм, инопланетяне и НЛО, альтернативная медицина, человеческая природа и эволюция – это далеко не весь перечень тем, о которых написал главный американский скептик. Майкл Шермер призывает читателя сохранять рациональный взгляд на мир, учит анализировать факты и скептически относиться ко всему, что кажется очевидным.

Майкл Брант Шермер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Записки примата: Необычайная жизнь ученого среди павианов
Записки примата: Необычайная жизнь ученого среди павианов

Эта книга — воспоминания о более чем двадцати годах знакомства известного приматолога Роберта Сапольски с Восточной Африкой. Будучи совсем еще молодым ученым, автор впервые приехал в заповедник в Кении с намерением проверить на диких павианах свои догадки о природе стресса у людей, что не удивительно, учитывая, насколько похожи приматы на людей в своих биологических и психологических реакциях. Собственно, и себя самого Сапольски не отделяет от своих подопечных — подопытных животных, что очевидно уже из названия книги. И это придает повествованию особое обаяние и мощь. Вместе с автором, давшим своим любимцам библейские имена, мы узнаем об их жизни, страданиях, любви, соперничестве, борьбе за власть, болезнях и смерти. Не менее яркие персонажи книги — местные жители: фермеры, егеря, мелкие начальники и простые работяги. За два десятилетия в Африке Сапольски переживает и собственные опасные приключения, и трагедии друзей, и смены политических режимов — и пишет об этом так, что чувствуешь себя почти участником событий.

Роберт Сапольски

Биографии и Мемуары / Научная литература / Прочая научная литература / Образование и наука

Похожие книги