Участвовавшие в исследовании врачи, ознакомившись с этими цифрами, чаще всего давали ответ в диапазоне от 80 до 90 %[217]
. Правило Байеса позволяет вычислить верный ответ: 9 %. Да-да, профессионалы, которым мы вверяем свою жизнь, не справляются с простейшей задачей интерпретации результатов анализа, причем ошибаются по-крупному. Они убеждены, что у пациентки рак с вероятностью почти 90 %, хотя на самом деле с вероятностью 90 % рака у нее нет. Представьте вашу эмоциональную реакцию на первую цифру, а потом — на вторую и подумайте, как бы вы в тех и других обстоятельствах оценивали свои перспективы. Вот почему любому человеку не помешает как следует разобраться в теореме Байеса.Чтобы принять сопряженное с риском решение, необходимо оценить шансы («Есть ли у меня рак?») и взвесить последствия каждого из вариантов («Если у меня рак, а я не буду лечиться, я умру; если же у меня нет рака, а я соглашусь на хирургическое вмешательство, мне придется испытать боль и подвергнуться ненужной уродующей операции»). В главах 6 и 7 мы порассуждаем о том, как надо принимать решения с учетом их последствий, если нам известны вероятности; но в любом случае начинать нужно с вычисления самих вероятностей: какова вероятность, что некое обстоятельство истинно в свете имеющихся доказательств?
Как бы ни пугало вас слово «теорема», правило Байеса не очень сложно, и, как мы убедимся в конце главы, его вполне можно прочувствовать интуитивно. Величайшая догадка его преподобия Томаса Байеса (1701–1761) состоит в следующем: уровень доверия гипотезе можно количественно выразить в виде вероятности. (Это субъективистское понимание слова «вероятность», с которым мы познакомились в предыдущей главе.) Пусть Р(гипотеза) — это вероятность гипотезы, другими словами, степень нашей уверенности в ее истинности. (Если говорить о медицинском диагнозе, гипотеза — это утверждение, что пациент болен.) Очевидно, что доверие любой идее должно основываться на доказательствах. Языком теории вероятности можно сказать, что доверие должно
Усвоив этот теоретический момент, вы разберетесь и с правилом Байеса, поскольку это всего лишь формула вычисления условной вероятности, знакомая нам из предыдущей главы, примененная к уверенности и доказательству. Мы помним, что вероятность А при условии В равна вероятности (А и В), деленной на вероятность В. Следовательно, вероятность гипотезы с учетом имеющихся данных (которая нам и нужна) — это вероятность конъюнкции гипотезы и данных (скажем, пациентка больна
Что это значит? Вспомним, что Р(гипотеза|данные), левая часть равенства, — это апостериорная вероятность — степень доверия гипотезе, уточненная после изучения доказательств. Например, уверенность в диагнозе после того, как стал известен результат анализа.
Р(гипотеза) в правой части равенства — это
Р(данные|гипотеза) — это
И наконец, Р(данные) — это полная вероятность появления данных во всех случаях, независимо от того, верна гипотеза или неверна. Ее иногда называют маргинальной вероятностью — не потому, что она незначительна, но потому, что суммарный итог по каждой строке (или столбцу) принято было записывать на полях (от margin, «поле страницы»), то есть это суммарная вероятность получения данных при условии, что гипотеза верна, и при условии, что она неверна. Легче запомнить другой термин — «распространенность данных». В случае медицинского диагноза это доля
Заменив алгебраическое равенство удобной для запоминания схемой, получаем: