В переводе с языка математики это звучит следующим образом: «Степень доверия гипотезе после изучения данных должна быть равна априорной уверенности в гипотезе, умноженной на правдоподобие появления данных при условии, что гипотеза верна, и деленной на суммарную распространенность данных при всех условиях».
В обычной жизни это работает так. Вам стал известен новый факт; как должна измениться ваша уверенность в гипотезе? Во-первых, доверяйте ей сильнее, если с самого начала она была неплохо обоснована, внушала доверие или походила на правду, то есть если высока ее априорная вероятность (первый множитель в числителе). Как неустанно твердят студентам-медикам преподаватели, если за окном раздается стук копыт, это, скорее всего, лошадь, а не зебра. Если пациент жалуется на боли в мышцах, скорее всего, у него грипп, а не болезнь куру (редкое заболевание, распространенное среди представителей племени форе в Новой Гвинее), даже если симптомы согласуются как с тем, так и с другим заболеванием.
Во-вторых, доверяйте гипотезе больше, если подобные данные встречаются особенно часто, когда она верна, то есть если высоко правдоподобие данных (второй множитель в числителе). Если к вам обращается пациент с кожей голубого оттенка, разумно будет предположить у него метгемоглобинемию, известную как болезнь голубой кожи; пятнистую лихорадку Скалистых гор разумно заподозрить у пациента из района Скалистых гор, который является на прием с сыпью и повышенной температурой.
В-третьих,
Давайте посмотрим, как это работает с цифрами. Вернемся к примеру с онкологическим диагнозом. Частота, с которой заболевание встречается в популяции, 1 %, это наша априорная вероятность: Р(гипотеза) = 0,01. Чувствительность теста — это правдоподобие положительного результата анализа при условии, что пациент болен: Р(данные|гипотеза) = 0,9. Общая распространенность положительного результата анализа равна сумме вероятностей верного попадания для тех, кто действительно болен (90 % от 1 %, или 0,009), и ложной тревоги для тех, кто на самом деле здоров (9 % от 99 %, или 0,0891), что дает нам число 0,0981, которое мы округлим до 0,1. Подставив значения переменных в правило Байеса, получим 0,01 × 0,9 / 0,1, что равно 0,09.
Так почему же доктора (и, будем честны, большинство из нас) заблуждаются? Почему мы думаем, что у пациентки практически наверняка злокачественная опухоль, когда на самом деле ее практически наверняка нет?
Игнорирование базовой оценки и эвристика репрезентативности
Канеман и Тверски поняли, где мы чаще всего спотыкаемся, пытаясь мыслить по-байесовски: мы игнорируем
Исследователи пошли еще дальше и предположили, что мы вообще не мыслим по-байесовски. Вместо этого мы оцениваем вероятность принадлежности некоего случая к категории по его