Теперь можно было приступить к тестированию схемы синхронизации. Кэррол изготовил второй экземпляр своей цепи и подсоединил его к первому экземпляру согласно правилам Пекоры. В соответствии с теорией эти две цепи должны были осциллировать нерегулярно, хаотически, но в идеальном синхронизме между собой. Чтобы протестировать их синхронизм, Кэррол настроил осциллограф на отображение графика зависимости напряжения на приемнике
Кэррол нажал на кнопку, чтобы запустить свою систему. Понадобилось всего две миллисекунды, чтобы оба напряжения оказались на диагонали, после чего они оставались на ней до завершения эксперимента. «У меня становятся дыбом волосы на голове, когда я думаю об этом, – рассказывал мне Пекора. – Вряд ли я еще когда-нибудь в своей жизни переживу подобный момент. Это все равно как присутствовать при рождении своего ребенка».
Декабрь 1991 г. Последний день занятий в МТИ. Только что я закончил чтение последней лекции своего курса по теории хаоса. Все слушатели, за исключением одного аспиранта, покинули аудиторию. Сияя от гордости, он протянул мне лист бумаги, испещренный формулами и теоремами, каждая из которых была обведена аккуратной прямоугольной рамкой. При подготовке к предстоящему выпускному экзамену он умудрился представить весь курс по теории хаоса на единственном листе бумаги. Оценив его каллиграфический почерк, я понял, что имею дело с неординарной личностью. Так оно и было на самом деле: Кевин Куомо оказался одним из лучших аспирантов курса.
Куомо в это время только писал диссертацию. Ее темой было исследование синхронизированного хаоса в электрических цепях и возможность их использования в системах связи. В то время я имел некоторое представление о статье Кэррола и Пекоры, опубликованной в 1990 г., но еще не успел ознакомиться с ней основательно. Куомо хотел поделиться со мной всем, что он думает по поводу этой статьи, и буквально взахлеб рассказывал мне о ней, но затем переключился на собственную работу и предложил мне ознакомиться с цепью, которую он сам сконструировал. Это было первое в мире электронное воплощение уравнений Лоренца. Он также просил меня проверить выполненное им математическое доказательство – демонстрацию новой схемы синхронизации, удовлетворяющей уравнениям Лоренца вне зависимости от способа запуска приемника и передатчика. Куомо на мгновение остановился, а затем продолжил: Пекора и Кэррол не предложили никакого подобного доказательства, и это обстоятельство беспокоит его. Логика предложенного им доказательства не была слишком сложной – лишь стандартное применение функций Ляпунова, подобное тому, которое встречалось у нас на занятиях. Эта простота настораживала его: может быть, он в чем-то ошибается, что-то упустил из виду?
Оказалось, что Куомо ни в чем не ошибся. Предложенное им доказательство было безупречным, а разработанная им цепь действительно моделировала уравнения Лоренца (впоследствии Пекора честно признался в том, что до сих пор не представляет, как Куомо удалось додуматься до такого решения). Однако сейчас Куомо знаменит вовсе не этим. Впоследствии ему и его консультанту Элу Оппенгейму удалось упервые в мире продемонстрировать практическую возможность хаотического шифрования информации: синхронизированный хаос действительно можно использовать для повышения безопасности информации, передаваемой по каналам связи.