Вряд ли кто-либо сможет сейчас ответить на эти вопросы, сказал я ему. Ведь мы никогда не занимались изучением таких видов сетей. В том-то и дело, ответил Дункан. Специалисты по теории осцилляторов всегда исходили из того, что их сети являются идеально регулярными и столь же замечательно упорядоченными, как атомы в кристаллической решетке. Уинфри, Пескин и Курамото строили модели с максимальной связностью, когда каждый осциллятор связан со всеми остальными осцилляторами. Более высокая степень связности в сетях вообще недостижима, и нет сетевой архитектуры, более простой, чем эта. В последующих усовершенствованиях этих моделей математики укладывали осцилляторы рядом друг с другом, формируя длинную цепь, или размещали их симметрично по углам квадратной сетки или трехмерной решетки. Использование регулярных геометрий, подобных этим, представлялось вполне оправданным для задач, проистекающих из физики и техники: например, в массивах переходов Джозефсона сверхпроводящие осцилляторы намеренно укладываются аккуратными рядами и столбцами. Даже в сплошной среде, наподобие мензурки с реакцией Белоусова-Жаботинского, система связей по-прежнему остается регулярной: химические вещества диффундируют в первую очередь в своих ближайших соседей.
С другой стороны, для сложного переплетения нейронов в мозге, где клетки в значительной степени связаны со своими ближайшими соседями, но, помимо этого, связаны длинными волокнами с клетками, находящимися на другом конце того же полушария мозга, использование структур, наподобие сетки и пространственной решетки, заведомо неприемлемо. Более подходящая модель геометрии должна предусматривать использование более свободного типа структуры, некоторого сочетания порядка и случайности, с местными соединениями, объединенными в кластеры, и хаотическими глобальными соединениями. Возможно, то же самое относится и к сверчкам. Возможно, существует целый новый класс осцилляторных сетей, которые еще предстоит проанализировать.
Идея Дункана поначалу не вызвала во мне энтузиазма. Связанные осцилляторы на регулярных сетках уже представляли собой задачу огромной сложности; эти же новые, гибридные сети были бы просто безнадежны. Впрочем, мне не хотелось с ходу отвергать инициативу Дункана.
Когда мы приступили к детальному обсуждению его идеи, я уловил ее глубинный, более универсальный смысл. Те же соображения обязательно должны были возникнуть при рассмотрении других видов динамических систем, а не только связанных осцилляторов. Когда нелинейные элементы оказываются связанными в гигантские сети, схема соединений элементов в таких сетях обязательно имеет значение. Вот базовый принцип: структура всегда влияет на функцию. Структура социальных сетей влияет на степень распространения информации и заболеваний; структура электросетей влияет на устойчивость систем передачи электроэнергии. То же самое относится к видам в экосистемах, компаниям на глобальном рынке, каскадам реакций ферментов в живых клетках. Структура сети должна оказывать огромное влияние на ее динамику.
Тем не менее, теоретики, как правило, предпочитали уклоняться от изучения проблемы связей, бросаясь из одной крайности в другую. Они принимали за основу либо нереалистично регулярную структуру, либо совершенно хаотичную систему связей. Например, в 1969 г. биолог-теоретик Стюарт Кауффман предложил идеализированную модель генных сетей[235]
, в которой каждый ген регулировался продуктами двух других, выбранных произвольно из остального генома, причем это объяснялось не тем, что он полагал, будто его модель соответствует действительности, а тем, что в 1969 г. никто не знал, как именно организованы связи в генных сетях. Предположение о произвольности связей равноценно гаданию на кофейной гуще: принятие нулевой гипотезы в отсутствие какой-либо информации. Эпидемиологи-математики зачастую прибегали к такой же аппроксимации: они предполагали, что инфицированные люди взаимодействовали случайным образом с людьми, восприимчивыми к инфекции, несмотря на то что в случае определенных видов заболеваний (особенно в случае заболеваний, передаваемых половым путем) сеть контактов никоим образом не может носить случайный характер. Подобно регулярным сетям, произвольные сети являются весьма соблазнительными идеализациями. Теоретикам они кажутся привлекательными не из-за их правдоподобия, а потому, что анализировать такие сети проще всего.