Чтобы понять, почему так, рассмотрим длину пути между вами и самым отдаленным от вас («диаметрально противоположным») человеком в кольце. Чтобы добраться до него по кратчайшей цепочке, вы должны послать какой-то сигнал своему 500-му другу (то есть ближайшему к «диаметрально противоположному» вам человеку в кольце). Кратчайшим путем от него до интересующего вас человека опять-таки будет
На другом конце этого спектра, когда наше преобразование завершено и сеть стала совершенно произвольной, вычисление оказывается столь же простым. Теперь – и это удивительно! – каждый расположен на расстоянии лишь четырех шагов от каждого. Этот удивительный результат объясняется экспоненциальным ростом. В мире случайности, если вам известно 1000 человек (в среднем), а каждому из них также известно 1000 человек, это означает, что существует 1 миллион (= 1000 × 1000) человек, находящихся на расстоянии двух шагов от вас, 1 миллиард человек, находящихся на расстоянии трех шагов от вас, и 1 триллион – что гораздо больше населения нашей планеты – на расстоянии четырех шагов.
Возникает соблазн экстраполировать такой метод рассуждений на наш реальный мир, объяснив таким образом пресловутые «шесть степеней отчуждения». Но нельзя, поскольку здесь не учитывается то обстоятельство, что реальные отношения дружбы перекрываются между собой: многие из друзей ваших друзей являются также вашими друзьями и поэтому учитываются дважды.
Однако в случае гипотетической сети, которую можно охарактеризовать и как рассеянную (разбросанную), и как совершенно произвольную, указанное вычисление было бы справедливо, поскольку перекрытием отношений дружбы в данном случае можно было бы пренебречь. Когда вы выбираете случайном образом 1000 человек из огромного множества, составляющего 6 миллиардов человек, и то же самое делают все ваши друзья, вероятность перекрытия отношений дружбы составляет лишь 1 шанс из 6 миллионов. Таким образом, двойной счет в данном случае весьма маловероятен. Разумеется, это был бы довольно странный мир, в котором вероятность вашего знакомства с каким-нибудь крестьянином из Гималаев, принцем Уэльским или человеком, проживающим по соседству с вами, была бы одинаковой. Ваши друзья были бы разбросаны по всем континентам и по всем классам общества; они могли бы принадлежать к любой расе и исповедовать любую религию. В мире без перекрывающихся отношений дружбы существование какой-либо социальной структуры, семей или местных сообществ было бы просто невозможно.
Такие доводы подчеркивают важность понимания концепции перекрытия в более общем плане. Средняя величина перекрытия в сети оценивается с помощью второго статистического показателя. Этот статистический показатель – он назвается «кластеринг» – определяется как вероятность того, что два узла, связанные с каким-либо общим для них узлом, также окажутся связаны друг с другом (или, возвращаясь к нашему примеру с отношениями дружбы между людьми, вероятность того, что друзья некого третьего лица также дружат между собой). Применительно к двум крайним ситуациям, обсуждавшимся выше, можно показать, что кластеринг изменяется от 0,75 (максимально возможная величина) в случае первоначального кольца до исчезающе малой величины, составляющей 1 к 6 миллионам, в случае произвольной сети.