Например, чтобы прийти к случаю, когда кластеринг равняется 0,75, вам нужно исходить из того, что у вас есть практически все те же друзья, что и у человека, являющегося вашим непосредственным соседом в кольце (точнее говоря, 998 из 1000), в результате чего ваше перекрытие с этим,
Несмотря на то что эти два статистических показателя снижаются примерно на один и тот же коэффициент, они отражают принципиально разные аспекты архитектуры сети. Средняя длина пути отражает глобальную структуру; она зависит от способа соединения сети в целом, и ее невозможно оценить с помощью какого-либо локального измерения. Кластеринг отражает локальную структуру; он зависит лишь от способа соединений в типичной «близкой окрестности», межродственных связей среди узлов, соединенных с каким-то общим для них центром. Грубо говоря, средняя длина пути измеряет величину (масштаб) сети. Кластеринг измеряет близость родственных отношений (фигурально выражаясь, степень «кровосмесительности») в сети.
До сих пор основное внимание мы уделяли традиционным краям спектра сетей. Но мы по-прежнему пребываем в неведении относительно того, что происходит в середине этого спектра. Сами по себе края спектра говорят нам лишь о том, что преобразование сети каким-то образом сильно сжимает кольцо и разрушает его кластеры. Нам по-прежнему неизвестно, является ли этот переход постепенным или резким. Ни Дункану, ни мне не было понятно, как решить эту проблему чисто математическими средствами, поэтому мы воспользовались компьютером для моделирования такого преобразования на сетях достаточно большой, но все же вполне обозримой величины, начиная с исходных колец, содержащих 1000 узлов, по 10 связей на каждый узел. Чтобы отобразить в графическом виде структурные изменения на этом среднем уровне, мы представили зависимость средней длины пути и кластеринга от доли связей, которые были произвольно переустановлены.
Полученный результат удивил нас. Даже самая ничтожная доля случайности приводила к колоссальному сокращению сети. Сначала резко снижалась средняя длина пути: при увеличении количества произвольно переустановленных связей лишь на 1 % (это означало, что стала случайной лишь одна из каждых 100 связей) кривая снижалась на 85 % по сравнению со своим первоначальным уровнем. Дальнейшая переустановка связей оказывала лишь минимальное влияние: кривая превращалась практически в горизонтальную линию, пролегающую на низком уровне; это указывало на то, что сеть уже сократилась до минимально возможного размера, как если бы она была полностью произвольной. Между тем изменение кластеринга было весьма несущественным. При увеличении количества произвольно переустановленных связей на 1 % кластеринг снижался лишь на 3 %. Связи изымались из хорошо упорядоченных окружений, однако это не оказывало существенного влияния на кластеринг. Лишь на гораздо более поздней стадии преобразования, гораздо позже резкого сокращения средней длины пути, кластеринг начинал существенно снижаться.
У таких результатов есть интуитивное объяснение. В начале преобразования первые несколько произвольных связей действуют как перемычки – мосты между частями сети, которые в противном случае были бы слишком удалены друг от друга. Их непропорционально сильное влияние является следствием мощного нелинейного эффекта: они не только соединяют друг с другом два узла – они соединяют друг с другом целые миры. Например, мне нравится играть в шахматы в режиме он-лайн в Шахматном клубе интернета, где я подружился с Эмилио, редактором одного из голландских журналов. Благодаря возникновению этой «перемычки» я, конечно, очень сблизился с Эмилио – однако не только с ним, но и с тысячами других граждан Голландии: всеми его друзьями и друзьями этих друзей. И хотя мои собственные друзья даже не подозревают об этом, все они сейчас сблизились с Эмилио и его друзьями – и все это благодаря единственной «перемычке», созданной мною и Эмилио. Один этот мост играет очень важную роль.