В проведенном нами моделировании первые несколько «перемычек» резко сократили величину мира, но оказали весьма незначительное влияние на кластеринг. Из этого следует, что переход к тесному миру практически невозможно заметить на локальном уровне. Если бы вы сами проживали в мире, подвергающемся такому преобразованию, то ничто в вашем ближайшем окружении не говорило бы вам о том, что ваш мир стал маленьким. Количество ваших друзей осталось бы неизменным, а вы сами, возможно, даже не подозревали бы о том, что они могут быть связаны с более широким кругом людей. Человеку, проживающему в таком мире, могло бы казаться, что ему совершенно не угрожает опасность такого тяжелого заболевания, как СПИД – поскольку, например, никто из его половых партнеров не входит в группы повышенного иска, – хотя в действительности такая опасность вполне может подстерегать его в случае появления одной или двух «перемычек».
Самый важный результат такого моделирования заключался в том, что в достаточно широком промежуточном диапазоне переустановленных связей модельные сети были очень кластерированы и, вместе с тем, очень малы. Столь специфическое сочетание было новостью для математики. В традиционных сетях размер и кластеринг идут рука об руку. Произвольные сети малы и плохо кластерированы; напротив, регулярные сети велики и сильно кластерированы. Сети с переустановленными связями умудрялись быть и малыми, и сильно кластерированными одновременно.
Сети с такой парой взаимно противоречивых, на первый взгляд, свойств мы назвали «сетями тесного мира», отдавая дань такому же дуализму, который кажется столь парадоксальным, в связях между людьми: мы движемся в компактных кругах, но в то же время все мы связаны друг с другом на удивление короткими цепочками. Теперь вопрос заключался в следующем: встречается ли столь странная форма сетевой архитектуры в природе, а если встречается, то для чего она может понадобиться?
Наше моделирование показало, что «сети тесного мира» должны иметь широкое распространение в природе, поскольку для этого хватило бы даже очень малой доли «перемычек». Чтобы проверить этот вывод, нам были нужны эмпирические примеры. Найти их оказалось не так-то легко. На любого кандидата нужно было получить исчерпывающую характеристику, схема его связей должна быть известна до последней детали, каждый узел и каждая связь должны быть задокументированы. В противном случае мы не могли бы вычислить кластеринг и среднюю длину пути.
Тогда я вспомнил, что Кьени Бей, одна из студенток, которым я в прошлом году читал курс лекций по теории хаоса, выполнила проект, касающийся энергосистемы западных штатов США. Эта энергосистема представляла собой совокупность из примерно 5000 электростанций, связанных между собой высоковольтными линиями электропередачи, охватывающими штаты к западу от Скалистых гор, а также западные провинции Канады. Кьени и ее консультант Джим Торп поделились своими данными с Дунканом. Эти данные содержали огромный объем подробнейшей информации, которая была очень важна с инженерной точки зрения – максимально допустимое напряжение на линиях электропередачи, классификация узлов как трансформаторов, подстанций или генераторов, – однако мы проигнорировали все за исключением схемы соединений между узлами этой сети. Таким образом, эта сеть превратилась в абстрактную схему из точек, соединенных линиями. Чтобы проверить, является ли такая схема сетью тесного мира, мы сравнили ее кластеринг и среднюю длину пути с соответствующими показателями для произвольной сети с таким же количеством узлов и связей. Как и предполагалось, реальная сеть оказалась почти так же мала, как произвольная, но гораздо сильнее кластерирована. В частности, ее длина пути оказалась лишь в полтора раза больше, чем у произвольной сети, тогда как ее кластеринг оказался в 16 раз б