В описываемое нами время Курт Визенфельд был научным сотрудником с ученой степенью в Брукхейвенской национальной лаборатории. Он занимал должность младшего профессора и подумывал над тем, чтобы приступить к самостоятельной разработке какой-то темы. Его уже давно увлекали связанные нелинейные осцилляторы; еще в начале своей работы над самоорганизующимся критическим состоянием он проявлял интерес к спаренным маятникам. Поэтому уравнения, описывающие массивы переходов Джозефсона, не были для него большой новостью: он чувствовал себя вполне комфортно с ними, поскольку они напоминали столь привычные ему задачи с маятником. Его приход в эту область начался с сотрудничества с Питером Хэдли, аспирантом Стэнфордского университета, и его консультантом Маком Бисли, специалистом по сверхпроводимости, который в то время уже пришел к выводу, что в нелинейной динамике есть многое, что можно было бы использовать для анализа массивов Джозефсона. Реализация их совместного проекта началась после того, как они заручились поддержкой Визенфельда. Это была высокопрофессиональная команда исследователей. Питер Хэдли был поистине неутомимым тружеником и изобретательным специалистом, поднаторевшим в вопросах компьютерного моделирования. Долговязый блондин Бисли отличался большой сообразительностью, практическим опытом и, что немаловажно, любил цитировать всевозможные афоризмы. Курт был общепризнанным авторитетом в области нелинейной динамики – на то время, пожалуй, одним из лучших специалистов в этой области.
Они решили сосредоточиться на «последовательных массивах», то есть массивах, в которых переходы Джозефсона соединены последовательно друг с другом. Архитектура такого рода была наиболее податлива с математической точки зрения; к тому же она представляла технологический интерес для применения в системах генерирования излучения. Несмотря на то что отдельно взятый переход Джозефсона вырабатывает излучение, мощность которого составляет примерно один микроватт – что совершенно недостаточно с практической точки зрения, – вырабатываемую мощность излучения можно существенно увеличить, соединив соответствующим образом множество переходов Джозефсона. Точно так же как синхронно хлопающая в ладони публика в зале производит гораздо больший шум, чем любой отдельно взятый зритель, синхронизированный массив переходов Джозефсона оказывается гораздо более мощным источником излучения, чем отдельно взятый переход. Если бы, например, вы могли придумать способ заставить синфазно осциллировать тысячу переходов Джозефсона, то мощность, подаваемая на какое-нибудь другое устройство – «нагрузку», подключенную параллельно такому массиву переходов, – увеличилась бы в миллион раз. (Совокупная мощность пропорциональна квадрату количества переходов.) Проблема, однако, заключается в том, как синхронизировать такой массив переходов. Никто не знает, какой должна быть оптимальная архитектура соответствующей цепи и какой вид нагрузки является самым подходящим для этого. Вообще говоря, на самом деле никто не знает, почему такие массивы должны – или вообще не должны – синхронизироваться. Это было фундаментальной проблемой для данной области знаний в целом.
Курту и его сотрудникам было известно, что важнейшую роль играют электрические характеристики нагрузки – то, как она препятствует прохождению электрического тока. (В случае полного отсутствия нагрузки переходы никогда не удалось бы синхронизировать; они даже не смогли бы ощущать электрические осцилляции друг друга.) Простейший вид нагрузки должен вести себя подобно резистору, пропуская через себя ток, пропорциональный напряжению на нагрузке. Он может вести себя подобно конденсатору (который блокирует постоянный ток, но пропускает переменный ток) или катушке индуктивности (которая обладает характеристиками, обратными конденсатору: пропускает постоянный ток, но оказывает сопротивление переменному току высокой частоты). Вообще говоря, нагрузка может представлять собой то или иное сочетание трех указанных видов сопротивления с разными весовыми коэффициентами – одним словом, выбирать было из чего.
Моделируя десятки разных вариантов на компьютере, исследователи определили характеристики устойчивости синхронизированного состояния[164]
и выяснили, какие нагрузки лучше всего синхронизируют такой массив. По ходу дела они натолкнулись на факт, который изначально не являлся предметом их исследований; этот факт невозможно было не заметить. Когда такие массивы не были синхронизированы, они обычно упорядочивали свое поведение несколько иначе: все переходы осциллировали с одним и тем же периодом, но при этом были предельно рассинхронизированы между собой – так, словно они не хотели иметь ничего общего друг с другом. Исследователи назвали этот необычный режим организации состоянием антифазы; впоследствии для него было придумано другое название: разнесенное состояние (splay state).