Преимущество этих упрощений заключалось в том, что это позволяло нам визуализировать динамику системы, создавая обычные двумерные представления. В любой данный момент каждый переход характеризовался вполне определенной фазой – точно так же, как маятник, сфотографированный в какой-то момент времени, находится под определенным углом к вертикали. Представляя в графическом виде одну фазу по горизонтальной оси, а другую – по вертикальной, мы можем изобразить все возможные сочетания в виде соответствующих точек в неком квадрате, стороны которого соответствуют 360 градусам возможных фаз. Этот квадрат называется «пространством состояний» системы. Он обладает замечательным геометрическим свойством, навевающем воспоминания о старых видеоиграх, в которых космический корабль, уходящий за правый край экрана, чудесным образом появляется из-за левой границы, а космический корабль, ударяющийся о нижний край экрана, возникает наверху. Пространство состояний для этого массива Джозефсона должно было обладать таким же свойством, поскольку фаза, составляющая 360 градусов, физически неотличима от фазы, равной 0 градусов (точно так же как маятник, свисающий вертикально вниз, будет все так же свисать вертикально вниз, если повернуть его вокруг оси на 360 градусов). Поскольку левый и правый края квадрата соответствуют одному и тому же физическому состоянию, математики представляют их как полностью слившиеся в одну линию, как если бы вы свернули лист бумаги в цилиндр, соединив между собой его края. Кроме того, верхний и нижний края квадрата также соответствуют одному и тому же физическому состоянию, поэтому их также следует соединить между собой, а это означает, что верхний и нижний края нашего цилиндра также нужно соединить между собой, в результате чего получится что-то похожее на жареный пончик, поверхность которого представляет собой форму, называемую тором.
Таким образом, мы приходим к выводу, что пространство состояний для этого простейшего из массивов Джозефсона эквивалентно поверхности тора. Каждая точка на поверхности такого тора соответствует определенному электрическому состоянию массива, и наоборот. По мере того как с течением времени массив переходит из одного состояния в другое, точка, соответствующая электрическому состоянию массива, плавно перемещается по поверхности тора, подобно тому как увлекается плавным течением ручейка пылинка, случайно оказавшаяся на его поверхности. Картина течения этого воображаемого ручейка – со всеми его изгибами и завихрениями, его заводями и участками с ускоряющимся течением – учитывается в уравнениях цепи для нашего массива. Исходя из текущих значений фаз, эти уравнения определяют, как изменятся фазы в следующий момент времени.
Эти уравнения относятся к классу нелинейных уравнений, поэтому мы, конечно, не могли надеяться на то, что нам удастся найти для них однозначное и исчерпывающее решение, но мы полагали, что сможем выяснить качественные характеристики этого потока в целом. Например, точки стагнации (места на поверхности тора, где наша воображаемая пылинка застревает) должны соответствовать состояниям электрического равновесия для массива, когда все токи и напряжения не изменяются во времени. Устойчивость таких состояний можно оценить, вообразив, как наша пылинка могла бы покинуть такое состояние: если она всегда возвращается в него, как если бы ее засасывало в водосток, то такое состояние равновесия является устойчивым. Можно также предположить, что картина потока содержит замкнутый контур, маленький водоворот, в котором наша пылинка может кружиться до бесконечности, каждый раз по истечении определенного времени возвращаясь в свою исходную позицию. Такой контур должен означать некую форму периодического, повторяющегося поведения – электрическую осцилляцию в массиве. Мы с Куртом были уверены, что такие контуры обязательно должны иметь место, но нам не было ничего известно об их устойчивости – о том, всасывают ли они в себя соседние состояния.
Простейшим контуром является синхронная осцилляция, при которой фазы обоих переходов все время остаются равными. Соответствующая траектория пролегает вдоль главной диагонали квадрата. Она начинается в нижнем левом углу, затем движется на северо-восток, пока не достигнет верхнего правого угла, после чего она мгновенно возвращается в нижний левый угол (поскольку 360 градусов и 0 градусов соответствуют одной и той же фазе). Если рассматривать такую траекторию на квадрате, то получается, что она все время перепрыгивает из одного угла в другой, но если ее рассматривать на поверхности тора – которая представляет собой истинное пространство состояний для нашей системы, – то никаких перепрыгиваний не наблюдается. Переход оказывается плавным и незаметным.