Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

2.19. Воспользоваться предыдущей задачей и построить произвольный перпендикуляр к данному диаметру, пересекающий окружность в точках С и D.

2.20. Какую бы точку С на прямой l мы ни взяли, величина |ACBC| в силу неравенства треугольника не может превзойти длины отрезка AB. Следовательно, существует точка прямой l, отвечающая требованиям задачи. По условию точки А и В лежат по разные стороны прямой l. Принципиально ли это требование, или же можно сформулировать эквивалентную задачу для точек, лежащих по одну сторону прямой l?

2.21. Для построения естественно воспользоваться обычным методом геометрических мест. Каждая вершина квадрата лежит на внешней половине окружности, построенной на стороне четырехугольника как на диаметре. Чтобы отыскать второе геометрическое место точек, которому принадлежат вершины, нужно выяснить, что связана какая-то из линий, определяющих вершины, с данным четырехугольником. Рассмотрите с этой целью диагональ квадрата.

2.22. Дан отрезок и известно, что его длина 7. Отрезок длины 1 не известен. Если бы он был дан, то отрезок длины √7 можно построить, как только мы построим отрезок длины √3. Затем построим гипотенузу прямоугольного треугольника со сторонами √3 и 2.

2.23. Решение можно искать только при одновременном выполнении условий:


K главе 3

3.1.

Чтобы связать участвующие в задаче элементы, нужно отрезок ОА луча, перпендикулярного к ребру, спроецировать на другую полуплоскость. Проекцию ОВ этого отрезка спроецировать в отрезок ОС, лежащий на втором луче.

3.2. Чтобы связать данные углы с величиной угла, который нужно найти, следует спроецировать катеты треугольника на плоскость P и построить искомый угол.

3.3. При проецировании угла α на плоскость P возникает четырехгранный угол, в котором три плоских угла даны, а два двугранных угла прямые. Чтобы установить связь между плоскими углами, нужно пересечь этот четырехгранный угол плоскостью Q, перпендикулярной к плоскости P.

3.4. Если спроецировать искомую прямую, параллельную а, на плоскость, перпендикулярную к а, то мы получим точку. Спроецируйте на эту же плоскость три оставшиеся прямые.

3.5. Начать нужно с построения искомого угла. Для этого прямые AB и SC нужно перенести в одну точку. Если сместить прямую SC, то она «повиснет в воздухе» и угол, который мы получим, не будет связан с треугольником. Поэтому проведем через току C прямую CD, параллельную AB; угол SCD

искомый.

3.6. Лучи Аx и Вy удобно расположить так, как показано на рис. I.3.6. Утверждение, что ОК = АО, равносильно утверждению, что АM = MK (рассмотрите прямоугольные треугольники ОАМ и OKM).

3.7. Если такое сечение четырехгранного угла существует, то в результате параллельного сдвига плоскости этого сечения мы получим новую плоскость, пересечение которой с четырехгранным углом — тоже параллелограмм. Поэтому строить сечение можно в любой точке ребра четырехгранного угла.

3.8. Если продолжить DE и BC до пересечения в точке F, то BD — средняя линия в треугольнике EFC (рис. I.3.8). Площадь треугольника DEА равна половине площади треугольника FEA.

3.9. Чтобы ответить на вопрос задачи, нужно определить высоту H

пирамиды. Каждый из данных двугранных углов можно измерить с помощью линейного угла, опирающегося на высоту H. Остается использовать тот факт, что в основании лежит правильный треугольник.

3.10. Докажите, что высота, проведенная в треугольнике АDВ через вершину D, проходит через середину E основания AB. Тогда интересующий нас двугранный угол измеряется линейным углом DEC.

3.11. Условия задачи отражены на рис. I.3.11. Сторона а основания известна, так как известна площадь основания.

3.12. Аналогичное построение на плоскости приводит к образованию треугольника, подобного данному, с коэффициентом подобия ½. Поэтому и здесь следует постараться выяснить, подобны ли рассматриваемые тетраэдры.

3.13. Если О — центр шара, касающегося боковых граней пирамиды в точках О1, О2 и О3 (рис. I.3.13), то легко установить, что SB1

= SB2 = SB3. Если мы сумеем доказать равенство треугольников А21 и А23, то установим, что в основании пирамиды лежит правильный треугольник.

3.14. Достроить усеченную пирамиду до полной и рассмотреть высоты пирамид, имеющих три основания, о которых идет речь в условии.

3.15. Построить угол между скрещивающимися прямыми можно, если параллельно перенести их так, чтобы они проходили через одну точку. В качестве такой точки удобно выбрать вершину А основания пирамиды. Если мы достроим треугольник АВС, лежащий в основании, до параллелограмма АВСЕ (рисунок сделайте самостоятельно), то угол DАЕ будет искомым. Образовавшаяся в результате четырехугольная пирамида будет состоять из ребер данной длины, за исключением ребра .

3.16. Тетраэдр разбивается на две пирамиды с общим основанием — плоскостью сечения. Данное отношение объемов позволяет найти отношение высот этих пирамид и, следовательно, отношение синусов искомых углов.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература