Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

1.6. Так как В = 3C (рис. I.1.6), то сторона AB меньше стороны AC и можно доказать, что площадь треугольника АВD (АD — биссектриса треугольника АВС) меньше площади треугольника ADC. Таким образом по условию

1.7. Применить метод сравнения площадей.

1.8. Все участвующие в задаче величины связаны с площадью треугольника, которая известна. Воспользоваться сравнением площадей.

1.9. В треугольнике даны две биссектрисы и отношение, в котором эти биссектрисы делятся точкой их пересечения. Наряду с данными отношениями естественно воспользоваться свойством отрезков, на которые биссектриса делит противоположную сторону треугольника. Поскольку требуется определить углы треугольника, то от отношений данных линейных величин нужно перейти к отношению сторон данного треугольника.

1.10. Продолжить отрезок до пересечения в точке А с другой стороной угла.

1.11. Известные высоты треугольника естественно связать между собой с помощью его площади. При этом вместо сторон треугольника удобнее рассматривать его углы, выразив стороны через третью высоту.

1.12. В соотношении b + сk выразить

b и с через известную высоту h и тригонометрические функции углов В и С.

1.13. Способ 1. Чтобы решить задачу, нужно установить связь между углом α, сторонами треугольника и его площадью. Однако установить эту связь непосредственно не удается. Поэтому необходимо рассматривать вспомогательные элементы, например перпендикуляры длины x, у и z, опущенные из точки О на стороны а, b, с соответственно.

Способ 2. Чтобы установить связь между углом α, сторонами треугольника и его площадью, можно ввести в рассмотрение длины отрезков: ОА = I, ОВ = m, ОС = n.

1.14. По условию CD

= BCAC (D — основание высоты). Однако BC и AC можно выразить через CD с помощью тригонометрических функций углов треугольника АВС. Это даст нам уравнение, связывающее углы треугольника АВС.

1.15. Если рассматривать длины сторон AC = b и BC = а, то все участвующие в задаче геометрические величины будут связаны с площадью треугольника ABC.

1.16. Чтобы геометрически связать окружность с центром О и окружность с центром О1, нужно провести отрезки СО и ВО (рис. I.1.16). Окружность О

1 описана около треугольника СОВ. Длина хорды СВ известна. Следовательно, для того, чтобы найти радиус, достаточно определить угол СОВ.

1.17. Задачу удобно переформулировать иначе: через центр вписанной окружности проведем прямую, параллельную средней стороне треугольника, и докажем, что она пройдет через точку пересечения медиан, т. е. точка пересечения этой прямой с медианой, опущенной на меньшую сторону, делит медиану в отношении 2 : 1.

1.18. Воспользоваться методом сравнения площадей.

1.19. Точки A, О и L лежат на одной прямой — биссектрисе угла ВАС, аналогично точки В, О и K лежат на биссектрисе угла АВС. Прямая KL делит угол АСМ пополам (СМ — продолжение BC).

По условию A = 2С, а В

= 4С (рисунок сделайте самостоятельно).

1.20. Так как сумма углов в треугольнике равна π, то углы А, В и С нетрудно вычислить.

1.21. Сделать несложное дополнительное построение, чтобы получились подобные треугольники.

1.22. Поскольку отрезки, длины которых входят в правую часть равенства, лежат на одной прямой, нужно выразить длины всех отрезков на той же прямой. Тем самым мы «спрямим» записанное соотношение и сделаем его доказательство простым.

1.23. В формулу входят отношения. Поэтому целесообразно сделать дополнительные построения, в результате которых получатся подобные треугольники.

1.24. При построении, описанном в условии, возникают подобные треугольники. Нужно с их помощью заменить стоящие в левой части отношения новыми отношениями с тем, чтобы в знаменателе была одна и та же сторона треугольника, а в числителе — отрезки этой стороны. (!)

1.25. Положение прямой, проходящей через точку О, можно определить с помощью угла α, который эта прямая составляет с некоторым фиксированным радиусом описанной окружности. Нужно доказать, что величина, о которой говорится в условии, не зависит от α.

1.26. Чтобы ответить на вопрос задачи, нужно знать стороны данного треугольника и радиус описанной около него окружности. С вычисления этих величин и следует начать решение задачи.

1.27. Связать углы треугольника и его стороны можно либо с помощью теоремы синусов, либо с помощью теоремы косинусов. Данное в условии соотношение между сторонами треугольника подсказывает, что теорема косинусов удобнее.

1.28. Если отрезки ОА, ОВ и ОС, входящие в данное соотношение ОА² = ОВ · ОС, выразить через радиус r вписанной окружности и углы треугольника, то должно получиться соотношение между тригонометрическими функциями этих углов, не содержащее r. (!)

1.29. Применить формулу, выражающую площадь треугольника через две стороны и синус угла, и теорему косинусов. (!)

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература