Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

1.33. При продолжении боковой стороны трапеции и указанного в условии отрезка до их пересечения получаются подобные треугольники. Это позволяет выписать соответствующую пропорцию и составить из нее производную пропорцию.

1.34. Чтобы использовать условие AN : NB = 1 : 2, можно отметить на рисунке точку пересечения прямой с продолжением одной из сторон квадрата или провести через точку N прямую, параллельную BC.

1.35. Чтобы составить уравнение относительно x, удобно выразить через x отрезок АЕ один раз с помощью квадрата, а другой раз с помощью треугольника.

1.36. Чтобы связать треугольник и трапецию с окружностью, естественно провести радиусы в вершины обеих фигур. K этим радиусам прилегают прямоугольные треугольники. Выясните, какие из них равны. (!!)

Углы NOE и OAD (рис. II.1.36) можно выразить через угол а и убедиться в том, что они равны.

1.38. Выразить через R и n периметры первого и второго многоугольников и сравнить с периметром третьего многоугольника.

1.39. Величину R можно вычислить, построив треугольник, в котором все стороны выражаются через R и известные величины. В качестве такого треугольника удобно выбрать треугольник ОМО1, где О1 — центр рассматриваемой в задаче окружности.

1.40. Ввести в рассмотрение угол ADC (обозначить его через φ) и равный ему угол BEC. Найти tg φ.

1.41. Чтобы применить к треугольнику AOO1 теорему косинусов, придется использовать угол β между хордой AB и диаметром, исходящим из точки А. Косинус и синус этого угла легко выразить через b и r.

1.42. Чтобы использовать условие задачи, нужно соединить центр окружностей с концами и серединами хорд, являющихся сторонами квадрата. При решении следует помнить, что возможны два варианта взаимного расположения квадрата и центра окружностей: либо центр лежит внутри квадрата, либо вне его.

1.43. Чтобы составить уравнение относительно x, рассмотрите треугольник

ОЕС, в котором все стороны можно выразить через R и x.

1.44. Ввести обозначения R, r и x, где x — расстояние между проекциями центров на нижнее основание. Составить уравнения, используя условия задачи и теорему Пифагора.

1.45. Чтобы доказать, что фигуры СQNK и ОQR равновелики, достаточно доказать, что равновелики секторы COQ и KDN. Для этого следует выяснить связь между радиусами большей и меньшей окружностей.

1.46. Пусть K — проекция точки O на AB. Отрезок OK можно вычислить двумя способами: из треугольника OAK и из треугольника OKP1.

1.47. Так как хорды пересекаются внутри окружности, то естественно воспользоваться равенством произведений отрезков, на которые каждая хорда делится точкой пересечения.

1.48. Чтобы связать x и R, а именно это требуется в условии задачи, нужно опустить из центра О2 перпендикуляры O2D и О2С на радиусы OA и ОВ соответственно.

Рассмотреть треугольник О2СО

1. Выразить О2С через x и R, используя тот факт, что угол ОАВ = 45°.

1.49. Угол АМС равен π − 2φ. Если МВ = МС = рx, то AC можно выразить из треугольников АМС и АВС. Приравняв эти выражения, получим уравнение относительно x.

1.50. Если стороны треугольника а, аd, а + d, то его полупериметр p = 3a/2 . Из формулы Герона получим уравнение относительно а:

Это уравнение нужно решить относительно а. Подберите удобную замену переменной.

1.51. Пусть PP1 — средняя линия треугольника АВС, а QQ1 — средняя линия треугольника PBP1 Пусть далее P

1 — точка пересечения PP1 и BR, а Q2 — точка пересечения QQ1 с BR. Убедитесь в подобии треугольников Р2TP и Q2TQ.

1.52. Рассмотрите треугольники с общей вершиной, опирающейся на отрезки, которые участвуют либо в условии задачи, либо в искомом соотношении.

1.53.MN — хорда второй окружности, ее центральный угол МО2N равен 150°, что следует из рассмотрения первой окружности.

1.54. Так как α + β + γ+ δ = 180°, то площадь S четырехугольника АВСD равна

S = ½ab sin (γ + δ) + ½cd sin (α + β) = ½ sin (α + β) (ab + cd).

Далее воспользоваться теоремой синусов, в силу которой а = 2R sin α, b = 2R sin β , ... .

K главе 2

2.1. Осуществить параллельный перенос отрезка DC в точку В.

2.2.

Сколько решений имеет задача?

2.3. Точки А и А1 лежат на прямой, параллельной BC и отстоящей от BC на расстоянии hа. Нужно найти еще одно свойство любой из этих точек; в этом должен помочь угол φ.

Отразив треугольник СА1А от оси А1А, получим треугольник С1А1А (рисунок сделайте самостоятельно). Фигура С1АВА1 — параллелограмм, у которого вершины С1 и В фиксированы, углы известны, а две другие вершины нужно построить.

2.4. Зная R и b, можно построить треугольник АОF (рис. II.2.4). Остается использовать медиану mс. Чтобы это сделать, нужно, после того как построен треугольник АОF, построить середину отрезка AB.

2.5. Докажите, что точка Q лежит на окружности, описанной около треугольника АВС. Для этого достаточно вычислить угол ВО1С.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература