Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

24.4. Выражение можно представить в виде А² + В² + С, где С — константа.

24.5. Чтобы раскрыть знаки абсолютных величин, нужно нанести на числовую ось точки ±1 и ±2, которые разобьют ее на пять интервалов.

24.6. Воспользоваться неравенством между средним арифметическим и средним геометрическим нескольких чисел.

24.7. Чтобы найти максимум AB + BC, удобно ввести углы x и у (рис. 1.24.7), имея в виду, что x + у = π − α, и перейти с помощью теоремы синусов к тригонометрическим соотношениям. (!)

24.8. Если обозначить катеты основания через а и b, то боковая поверхность призмы равна

причем ab = 4.

24.9. Квадрат должен быть вписан в шестиугольник так, чтобы не нарушалась симметрия, т. е. центр квадрата должен совпадать с центром шестиугольника.

24.10. Прежде всего необходимо обратить внимание на свойства квадратного трехчлена, стоящего в знаменателе. Его дискриминант отрицателен и, следовательно, трехчлен не может быть равен нулю при действительных x.

Если обозначить теперь данную дробь через у, то можно получить квадратное уравнение относительно x, в котором у играет роль параметра.

24.11. Если ребра параллелепипеда обозначить через а, b и с, то условие задачи можно записать в виде системы

Из второго и третьего неравенств следует, что

ab + с(а + b) ≥

ab + 5с.

24.12. Чтобы найти наименьшее значение этой функции, естественно выделить полный квадрат. Однако удобнее вначале перейти от котангенсов к косекансам, что позволяет выразить функцию только через синусы:

Теперь в числителе следует выделить полный квадрат разности. При этом могут представиться два случая, в зависимости от знака произведения sin (α + x) sin (α − x). Чтобы не рассматривать их отдельно, можно необходимые преобразования записать так:

sin² (α + x) + sin² (α − x) = [|sin (α + x)| − |sin (α − x)|]² + 2 |sin (α + x) sin (α − x)|.

24.13. Известно, что arcsin x + arccos xπ/2 . Поэтому данную функцию удобно преобразовать так, чтобы воспользоваться этим соотношением.

24.14. Воспользоваться преобразованием нормирования:

после чего коэффициенты при sin α и cos α можно объявить косинусом и синусом общего аргумента φ, т. е.

Функция у достигает своего наименьшего значения

когда sin (α + φ) = −1, и наибольшего значения

при sin (α + φ) = 1. (!)

24.15. Систему естественно привести к виду

Свободные члены равны, соответственно, 5², 12² и 5 · 12. Удобно каждое из соотношений разделить на его свободный член.

Вторые указания

K главе 1

1.1. Из треугольника AO1D определить АO1; если известен радиус окружности O1 (см. рис. I.1.1 на с. 114).

1.2. Зная AB, можно найти AD и радиус ВО

1 описанной окружности (рис. II.1.2[15]). Нужно лишь заметить, что угол ABD равен π/2 − α, а ВE = АB/2.

1.3. Возможны два случая взаимного расположения треугольника и окружности. Либо окружность будет вписана в треугольник так, что каждая точка касания делит соответствующую сторону пополам, либо одна вершина треугольника окажется внутри окружности, а две другие — вне.

Найдите решение, не зависящее от взаимного расположения окружности и треугольника. Для этого достаточно рассмотреть треугольник, который получится, если соединить середины сторон данного треугольника.

1.4. Чтобы найти отношение площадей треугольников А1В1С и АВС, нужно применить теорему об отношении площадей треугольников, имеющих равный угол.

В обозначениях, введенных на рис. II.1.4. имеем

С помощью теоремы о биссектрисе внутреннего угла треугольника остается выразить а1, a2, b1, b2, c1, с2 через а, b и с.

1.5. Если центр вписанной в треугольник окружности обозначить через О, то площадь треугольника АВС можно будет вычислить как сумму площадей треугольников АОВ, ВОС и СОА. При этом каждая из сторон АО, ВО и СО может быть выражена через радиус r вписанной окружности. Площадь треугольника А1В1С1 тоже разбивается на три площади: А1ОВ1, В1ОС1 и С1ОА1. Остается углы А1ОВ1, В1

ОС1 и С1ОА1 выразить через углы треугольника АВС.

1.6. Из данного соотношения между площадями треугольников АDС и АВD, имеющих общую сторону АD и одинаковые углы при вершине А (поскольку АD — биссектриса треугольника АВС), можно найти отношение сторон AC : AB. Далее применить теорему синусов.

1.7. Площадь треугольника САD (D — точка пересечения биссектрисы внешнего угла А треугольника АВС с продолжением стороны СВ) можно вычислить двумя способами, используя лишь элементы, участвующие в задаче.

1.8. Сумма двух сторон треугольника, не лежащих против угла А, участвует в выражении площади через полупериметр и радиус вписанной окружности и в выражении через биссектрису и синус половинного угла. Из этих двух выражений сумму b + с нужно исключить.

1.9. Отношение отрезков АО и ОМ дано. Эти отрезки можно рассматривать как отрезки, на которые сторона AM треугольника АВМ делится биссектрисой ВО. В результате мы перейдем к отношению отрезков AB и ВМ, последний из которых легко выражается через стороны данного треугольника.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература