Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

9.6. Если ввести новое неизвестное p = u + v, то с помощью уравнения u − v = 1 можно через p выразить как u, так и v. Это поможет решить второе уравнение системы.

9.7. Из системы, полученной в результате замены, исключить свободные члены. Это приведет к уравнению, левую часть которого легко разложить на множители.

9.8. В качестве вспомогательного неизвестного удобно выбрать

9.9. Найти x и сделать проверку. Обратить внимание на то обстоятельство, что разность, стоящая в левой части данного уравнения, всегда положительна.

9.10. Второй путь удобнее, так как не приходится решать неравенство с параметром β, что значительно упрощает исследование.

9.14. Первое уравнение задает квадрат с центром в начале координат и с диагоналями, равными по длине 2, расположенными на координатных осях.

9.15. Ввести новые неизвестные: x + 1/x = u, у + 1/y = v.

9.16. В первое и второе уравнения входит разность уz. Ее-то и следует исключить из этих уравнений.

9.17. Сумму x4 + у4 в третьем уравнении удобно выразить через x² +

у² и . В результате придем к уравнению относительно z.

9.18. Уравнение x + у = 1 − z позволит также упростить выражение, оказавшееся в скобках после того, как в третьем уравнении был вынесен за скобку множитель 1 − z.

9.19. Поскольку а, b и с — корни многочлена M(t), его можно записать в виде M(t) = (tа)(tb)(tс). Приравняв коэффициенты при одинаковых степенях t в двух выражениях для M(t), найдем uv и w (см. указание I, с. 138). Постарайтесь закончить решение, не прибегая к излишним выкладкам.

9.20. Умножить первое уравнение на ²z², а второе на x²уz². Будет ли нарушена при этом равносильность?

9.22. Умножить первое уравнение на z

и вычесть из второго. Аналогично поступить со вторым и третьим уравнениями.

9.23. Возвести первое уравнение в квадрат и вычесть его из второго. Из полученного уравнения исключить z, воспользовавшись сначала третьим, а затем первым уравнениями. (!!)

Чтобы осуществить эту операцию, первое уравнение нужно предварительно умножить на у.

9.24. Почленно сложить каждые два уравнения: первое и второе, первое и третье, второе и третье. Из найденной системы получить уравнение относительно u = xyz. (!!)

Чтобы получить уравнение относительно u = xyz, достаточно перемножить полученные уравнения.

9.25. Каждое уравнение — квадратное относительно соответствующего xk. Решив все эти квадратные уравнения и сложив их решения, мы получим уравнение относительно s. Гарантировать равносильность при этом нельзя, но в условии задачи требуется найти только одно решение.

9.26. Если обозначить 7x − 11у = u, то отсюда можно выразить z через u и у. Таким образом, мы получим снова систему двух уравнений с двумя неизвестными. Из этой системы легко исключить у.

9.27. Из такой системы можно исключить у, одновременно избавляясь от иррациональностей: нужно возвести оба уравнения в квадрат и вычесть второе из первого.

9.28. Выразить  через x и сравнить получающиеся в результате выражения для z².

9.29. Полученная после возведения в квадрат система уравнений позволяет легко определить uv, а затем u и v. (!!)

При определении u и v и при последующем вычислении x и у нужно провести исследование. В результате будут использованы условия а >

b > 0 и а + b < 1, а также введенные при возведении в квадрат ограничения x > 0, у > 0.

9.30. Наряду с решением x1, у1, z1 у системы обязательно есть решение −x1, −у1, z1. Таким образом, для единственности решения системы необходимо, чтобы эти два решения совпали. (!!)

Условие совпадения симметричных решений приведет к системе относительно а и b. Каждое из полученных значений а и b нужно проверить, так как мы воспользовались лишь необходимым условием единственности решения системы.

9.31. Подставив в первое и второе уравнения у = −x, мы получим два линейных уравнения относительно x³. Выразить из каждого уравнения x³ и приравнять эти два выражения. (!!)

Предыдущие рассуждения позволяют ограничить число рассматриваемых значений параметра а. Остается проверить, выполняются ли для каждого из оставшихся значений остальные условия задачи.

9.32. В качестве фиксированного значения b удобно выбрать b = 0. Мы придем к системе, из которой легко определить все возможные а. (!!)

Найденные значения а необходимо проверить.

9.33. Наряду с решением (x

1, у1) система имеет решение (x1, −у1). Она может иметь единственное решение лишь при у = 0. Подставив это значение у, находим, что а = 0. Достаточно ли выполнение условия а = 0 для того, чтобы у системы было единственное решение?

9.34. После исключения  получится уравнение

x²/y² − 2x/y + у² + 2x − 2у = 3.

Его не следует преобразовывать в уравнение четвертой степени. Если в качестве вспомогательного неизвестного z взять некоторое выражение, содержащее x и у, то получится квадратное уравнение относительно z.

9.35. Все прямые у = а(x + 5) + 4 проходят через точку (−5; 4). Построение графика функции у = |6 − |x − 3| − |x + 1|| удобно начать с построения графика функции

у = 6 − |x − 3| − |x + 1|.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература