Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

11.27. Так как xy = 3, то либо x, либо у больше единицы. Мы убедились, что x и у положительны. Следовательно,

xy > 1   и   |log2 (x + у)| = log2 (x + у).

Остается рассмотреть два случая в зависимости от знака log2 (xу).

11.29. Воспользоваться математической записью определения логарифма: аlogab = b.

11.30. Определив x, следует использовать его для упрощения третьего уравнения системы. Если третье уравнение преобразовать в алгебраическое, то посмотрите, что при этом может произойти — потеря или приобретение корней.

K главе 12

12.2. Доказательство следует начать с очевидного тождества

tg [(30° − α) + (60° − α)] = ctg 2α.

12.3. Воспользоваться тем, что

12.6. Вычислить произведение синусов несколько труднее. Удобнее найти квадрат этого произведения, записав 2 sin2 π/7 как 1 − cos

/7 и т. д.

12.7. Разделить числитель и знаменатель выражения, стоящего в правой части, на Вb.

12.8. Если заменить sin² x на k² sin² у, то sin² у можно вынести за скобки.

12.9. Выразить а² + b2 через cos α − β/2 .

12.10. Обозначить sin²α = а, sin²β = b, sin²γ = с и преобразовать данное равенство, выполнив сложение.

12.11. Привести к общему знаменателю и все произведения тригонометрических функций от α + π/3 и α + /3 преобразовать в сумму.

12.13. Второе слагаемое преобразуется к выражению −2 cos² 8° или cos 16° − 1.

К главе 13

13.1. Заменить √2 sin (x + π/4) на sin x

+ cos x, после чего объединить все одночлены, содержащие cos Зx, и все оставшиеся одночлены уравнения. Это поможет получить распадающееся уравнение, y которого в правой части нуль, а левая разложена на множители.

13.2. Если левую часть представить в виде , то получим распадающееся уравнение, которое нужно решать, следя за равносильностью.

13.3. Левую часть уравнения записать в виде , перенести все в одну часть и вынести  за скобки. (!!)

Оставшееся в скобках выражение симметрично относительно sin x и cos x. Если привести дроби к общему знаменателю, то должно получиться достаточно простое выражение, поскольку все подобные члены будут иметь разные знаки.

13.4. Найти такие решения уравнения sin 2x sin 7x = cos 2x cos 7x, при которых cos 2x cos 7x ≠ 0.

13.5. Замена ctg x1/tg x приведет к появлению tg x множителем в числителе. Однако tg x не может быть равным нулю.

13.6. Воспользоваться формулой разности тангенсов и заменить полученное уравнение эквивалентной ему системой, состоящей из нового уравнения и ограничений.

13.7. Множитель sin (x + π/4) входит в правую часть уравнения. Чтобы обнаружить это, достаточно заменить cos x на sin (π/2 −

x) и привести правую часть к виду, удобному для логарифмирования.

13.8. После приведения к виду, удобному для логарифмирования, внимательно следить за равносильностью.

13.9. Так как cos x/2 на интервале 0 < x/2 < π меняет знак, то этот интервал придется разбить на два: 0 < x/2 ≤ π/2π/2 < x/2 < π.

13.10. При решении получившегося уравнения нужно правильно оценить роль параметра: если из соотношения исчезает неизвестное и остается только параметр, то при данном значении параметра неизвестное может принимать любое значение из области определения данного уравнения.

13.11. Выбор значений x, попадающих в интервал 0 ≤ x ≤ 2π, удобнее осуществить, если при решении мы постараемся воспользоваться арккосинусами, областью значений которых является указанный интервал.

13.12. Под радикалом стоит полный квадрат. Помните, что

13.13. Остается заметить, что tg x + sin x = tg x(1 + cos x), а tg x − sin x = tg x (1 − cos x). Оба этих выражения входят слагаемыми в степени ½. Множитель tg½

x входит и в третье слагаемое. Этот множитель можно вынести за скобки, так как 1 + cos x и 1 − cos x никогда не станут отрицательными, а следовательно, равносильность в результате этого действия не нарушится. (!!)

Получаем уравнение вида tg½ x φ(x) = 0, где φ(x) имеет смысл всегда. Это уравнение равносильно совокупности уравнения tg x = 0 и системы

(B ограничении взято строгое неравенство, так ка случай tg x = 0 учтен раньше.)

13.14. Чтобы произвести упрощения, придется воспользоваться еще одним условным тождеством 1/tg 2x = ctg 2x. Провести анализ равносильности и перейти в полученном уравнении к синусам и косинусам.

13.15. Когда в уравнение входят только sin α cos α и sin α + cos α, то одну из этих величин, например вторую, можно обозначить через y, а другую выразить через y.

13.16. Перейти к функциям x и привести уравнение к однородному, домножив 6 sin x на тригонометрическую единицу.

13.17. Воспользоваться теоремой о рациональных корнях многочлена с целыми коэффициентами.

13.18. Выразить правую и левую части через y = cos x/2.

13.19. Выражение в квадратных скобках представить в виде

(1 + ctg x) + [ 1 + ctg (π/4 − x) ]

и воспользоваться формулой суммы котангенсов. B правой части для cos 2 x нужно выбрать выражение, которое позволит избавиться от стоящей в скобках единицы.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература