Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

13.46. Найдя y из квадратного уравнения, следует использовать и его выражение через x (см. указание I, с. 150). При такой замене появляется опасность приобретения посторонних корней.

13.47. Данную систему уравнений удобно переписать в виде

Легко заметить, что следствием полученной системы является уравнение cos 7x = 0, содержащее в качестве корней не только все числа, для которых cos x = 0, но и все корни второго уравнения. B самом деле, при cos 7x = 0 получим cos² 7x/2 = 1 и, следовательно, cos² x/2 = ½ . Остается отсеять посторонние значения x.

13.48. Левая и правая части преобразуются к виду, когда в знаменателе и в числителе появляются общие множители. Нужно следить за ограничениями, а в конце провести отбор решений.

13.49. Все ограничения можно объединить: sin 4x ≠ 0. Эти значения нужно исключить из решений уравнения, полученного после преобразований.

13.50. Следить за равносильностью всех преобразований. Отобрать среди корней числителя те, которые не обращают в нуль знаменатель.

13.51. Из полученных значений t нужно отбросить те, для которых sin t = 0, cos t = 0 и cos 2

t = 0, а также (это будет видно в процессе преобразований) cos 2t = ½. Первые три ограничения можно объединить: sin 4t ≠ 0.

К главе 14

14.4. Когда мы заменим sin 2x и cos 2x на их выражения через tg x, могут быть потеряны те решения неравенства, при которых sin 2x и cos 2x существуют, а tg x не существует. Однако tg x входит в правую часть данного неравенства, а потому значения x, при которых tg x не существует, не могут быть решениями этого неравенства.

14.5. Способ 1. Чтобы найти секторы круга, в которых tg 2 x ≤ 0, нужно вначале построить радиусы, соответствующие углам, для которых tg 2x = 0 и tg 2x не существует.

Способ 2. B результате применения формулы тангенса двойного угла возможна потеря решений: из области определения выпадают точки, в которых cos x = 0.

14.8.

Так как коэффициент при старшем члене положителен, то знаки корней зависят от знака свободного члена.

14.10. Найти те значения k, при которых полученное неравенство осуществимо.

14.11. Воспользоваться тем, что sin x + cos x = √2 cos (xπ/4), и решить неравенство относительно y = cos (xπ/4).

14.12. Произведение cos x cos 3x, стоящее в знаменателе, выразить через cos 2x. Получится алгебраическое неравенство относительно y = cos 2x.

14.13. При возведении неравенства в квадрат достаточно потребовать, чтобы cos x ≥ 0.

14.15. Обозначить sin α через y и разложить получившийся многочлен третьей степени на множители, воспользовавшись теоремой о делителях свободного члена и первого коэффициента.

14.16. Выражение  можно преобразовать, воспользовавшись разложением sin 3x = sin (2x + x).

14.17. Так как абсцисса вершины параболы оказывается внутри интервала −1 < z < 1, а сама парабола направлена рогами вверх, то условие задачи равносильно тому, что ордината вершины положительна.

К главе 15

15.1. Неравенство сводится к квадратному, если положить logsin x  2 = y. При этом необходимо следить за равносильностью преобразований.

15.3. Поскольку основание логарифма больше единицы, неравенство между логарифмами можно заменить таким же неравенством между cos x и tg x.

15.4. Остается перейти к системе тригонометрических неравенств, равносильной логарифмическому неравенству. При этом нужно помнить, что все функции, стоявшие в условии под знаками логарифма, должны быть положительными.

15.5. Для дальнейшего нужно иметь в виду, что условие 0 < |а| < 1 не равносильно неравенству −1 < а < 1.

15.6. При дальнейшем решении мы столкнемся с выбором целочисленного аргумента. Следует помнить, что мы имеем дело с |lg x

|, а не с lg x.

15.7. Неравенство равносильно условию, что знаменатель положителен, если при этом arccos (x² − 3x + 2) существует и отличен от нуля.

15.8. Если 1 − x > 0, то правая и левая части неравенства попадают в интервал от 0 до π/2 , который является общим интервалом монотонности для тангенса и косинуса. Если взять косинус от правой и левой частей неравенства, а знак неравенства изменить на противоположный, то получим неравенство, равносильное данному.

15.9. Неравенство 4xx² − 3 > 1 удовлетворяется лишь при x = 2. Докажите, что тогда оба сомножителя должны быть раны единице.

15.10. Первая система не имеет решения, поскольку из условия А = 0 следует, что tg x = 1. Но tg x стоит в основании логарифма и не может быть равным единице. Остается решить вторую систему, которую можно упростить, заметив, что tg x > 1.

К главе 16

16.3. При исследовании нужно помнить, что отрицательное число в дробной степени не имеет для нас смысла.

16.4. Решив простейшее тригонометрическое уравнение, получим показательное уравнение, которое нужно исследовать, в зависимости от значений, принимаемых целочисленным аргументом.

16.5. Вспомнить, когда произведение синусов и косинусов может равняться единице.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература