Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

16.7. Полученное уравнение легко решить, если записать sin³ x = = sin x (1 − cos² x). При решении распадающегося уравнения, которое получится в результате такой замены, нужно постоянно иметь в виду ограничения.

16.8. При решении удобно на время забыть о возникающих ограничениях, а в конце проверить, для каких из найденных значений неизвестного они выполняются.

16.9. Использовать тот факт, что x > 0.

16.10. При исследовании полезно иметь в виду, что cos x ≤ 1 и дискриминант квадратного уравнения не должен быть отрицательным.

16.11. Удобно отдельно рассмотреть случаи а ≤ −1, а ≥ −1, когда данное уравнение имеет неотрицательный дискриминант.

16.12. Вы должны получить систему, состоящую из двух уравнений, трех неравенств и двух ограничений ≠.

16.13. Обозначив 4cos² πx через u (u > 0), найдем, что левая часть, равная 4/u + u, не может стать меньше 4. Чтобы оценить квадратный трехчлен, стоящий в правой части, можно выделить полный квадрат.

16.14.

К главе 17

17.1. Осуществить замену переменных: x − 1 = y, 2x + 1 = z. Найти f(y) и g(z), что равносильно знанию f(x) и g(x).

17.2. Уравнение f(f(x)) = 0 имеет корни x1 = 0 и x2 = 3. Исследование функции y = x³ − 6x² + 9x − 3 позволит определить число оставшихся корней интересующего нас уравнения.

17.3. Первое уравнение после подстановки примет вид

5 · 2x² − 2xy + 1 = (1 + 2k)3y² − 1,

k — целое. При каких y в правой части не будет множителя 3?

17.4. Полученное после подстановки квадратное уравнение относительно z имеет дискриминант, равный (3y1/y)² , что позволяет непосредственно рассмотреть возможные корни.

17.5. Касание функций f(x) и F(x) в точке М0(x0; y0

) означает совпадение ординат f(x0) и F(x0), а также угловых коэффициентов касательных при x = x0, т. е. значений f′(x0) и f(x0).

17.6. Будьте внимательны в отношении точек границы множества решений и определите, какие из них принадлежат этому множеству, а какие не принадлежат.

17.7. Прямая y = −x позволит отсечь от части плоскости, координаты точек которой удовлетворяют первому неравенству — фигуру, площадь которой нас интересует.

17.8. Прямые AC и BD пересекаются в точке E(4; 4). Прямая BC параллельна оси абсцисс и пересекает ось ординат в точке G. Через точку D проведем прямую DF, параллельную оси абсцисс и пересекающую ось ординат в точке F, а прямую AC — в точке H. Пусть CK — перпендикуляр, опущенный из точки С на FD. Теперь искомую площадь легко найти через площадь прямоугольника FGCK и прямоугольных треугольников, которые будут изображены на рисунке после всех проведенных выше построений.

17.9. После замены переменных и простых преобразований исходные неравенства примут вид

Проекция множества решений этой системы рассматривается на прямую u = 2. Левую часть первого из неравенств рассмотрите как функцию второго порядка относительно u, где зависящие от v коэффициенты — параметры. Тогда можно сформулировать условия существования решений в зависимости от значений v. (Куда направлены ветви параболы и каков знак дискриминанта.) (!!)

Придется рассмотреть существование решений первого неравенства при u > 1 для разных случаев относительно коэффициента при u² функции f(u), т. е. v² − 1 > 0; v² − 1 = 0; v² − 1 < 0.

17.10. Если а — целое, то дискриминант данного уравнения есть квадрат целого числа, т. е. а² − 2а − 19 = n². Отсюда (а − 1)² − n² = 20. Левую часть нужно представить в виде произведения целых чисел.

17.11. Случаи, когда y = 0 нужно рассмотреть отдельно. Определить соответствующие а и для каждого из них решить исходное уравнение. До этого выводов о числе корней исходного уравнения делать не следует.

17.12. Исходное уравнение при y = sin 4x преобразуется к виду

(а + 3)y² + (2а − 1)y + (а − 2) = 0,

где |y| ≤ 1.

Исследуйте отдельно случаи D = 0 и D > 0, для каждого из которых найдите значения а, удовлетворяющие условию, в силу которого равно восемь решений исходного уравнения (см. условие задачи) попадают на отрезок [−π, π]. (!!)

При замене переменной z

= 4x получаем уравнение

(а + 3) sin² z + (2а − 1) sin z + (а − 2) = 0,

или

(а + 3)y2 + (2а − 1)y + (а − 2) = 0,

где y = sin z; |y| ≤ 1.

Если существует решение второго уравнения y1 ∈ (−1, 1), т. е. y1 лежит внутри интервала (−1, 1), то этому y1 соответствуют ровно два значения z ∈ (−π, π) и ровно восемь значений x ∈ (−π, π). (Для z период синуса равен 2π, а для x = z/4 период синуса уменьшится в 4 раза и будет равен π/2, т. е. внутри каждого интервала длиной π/2 мы получим два решения для x, а внутри интервала (−π, π) таких решений будет восемь.)

17.13. Если (x, y) — фиксированная точка плоскости и через эту точку проходит кривая семейства, то должно существовать, по крайней мере одно соответствующее ей значение параметра а. Рассмотрев уравнение семейства кривых как уравнение относительно а, мы и получим соответствующие ограничения.

К главе 18

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература