16.7.
Полученное уравнение легко решить, если записать sin³ x = = sin x (1 − cos² x). При решении распадающегося уравнения, которое получится в результате такой замены, нужно постоянно иметь в виду ограничения.16.8. При решении удобно на время забыть о возникающих ограничениях, а в конце проверить, для каких из найденных значений неизвестного они выполняются.
16.9.
Использовать тот факт, что x > 0.16.10.
При исследовании полезно иметь в виду, что cos x ≤ 1 и дискриминант квадратного уравнения не должен быть отрицательным.16.11.
Удобно отдельно рассмотреть случаи а ≤ −1, а ≥ −1, когда данное уравнение имеет неотрицательный дискриминант.16.12.
Вы должны получить систему, состоящую из двух уравнений, трех неравенств и двух ограничений ≠.16.13.
Обозначив 4cos² πx через u (u > 0), найдем, что левая часть, равная 4/u + u, не может стать меньше 4. Чтобы оценить квадратный трехчлен, стоящий в правой части, можно выделить полный квадрат.16.14.
К главе 17
17.1.
Осуществить замену переменных: x − 1 = y, 2x + 1 = z. Найти f(y) и g(z), что равносильно знанию f(x) и g(x).17.2.
Уравнение f(f(x)) = 0 имеет корни x1 = 0 и x2 = 3. Исследование функции y = x³ − 6x² + 9x − 3 позволит определить число оставшихся корней интересующего нас уравнения.17.3.
Первое уравнение после подстановки примет вид5 · 2x
² − 2xy + 1 = (1 + 2k)3y² − 1,k
— целое. При каких y в правой части не будет множителя 3?17.4.
Полученное после подстановки квадратное уравнение относительно z имеет дискриминант, равный (3y − 1/y)² , что позволяет непосредственно рассмотреть возможные корни.17.5.
Касание функций f(x) и F(x) в точке М0(x0; y0) означает совпадение ординат f(x0) и F(x0), а также угловых коэффициентов касательных при x = x0, т. е. значений f′(x0) и f(x0).17.6.
Будьте внимательны в отношении точек границы множества решений и определите, какие из них принадлежат этому множеству, а какие не принадлежат.17.7.
Прямая y = −x позволит отсечь от части плоскости, координаты точек которой удовлетворяют первому неравенству — фигуру, площадь которой нас интересует.17.8.
Прямые AC и BD пересекаются в точке E(4; 4). Прямая BC параллельна оси абсцисс и пересекает ось ординат в точке G. Через точку D проведем прямую DF, параллельную оси абсцисс и пересекающую ось ординат в точке F, а прямую AC — в точке H. Пусть CK — перпендикуляр, опущенный из точки С на FD. Теперь искомую площадь легко найти через площадь прямоугольника FGCK и прямоугольных треугольников, которые будут изображены на рисунке после всех проведенных выше построений.17.9.
После замены переменных и простых преобразований исходные неравенства примут видПроекция множества решений этой системы рассматривается на прямую u
= 2. Левую часть первого из неравенств рассмотрите как функцию второго порядка относительно u, где зависящие от v коэффициенты — параметры. Тогда можно сформулировать условия существования решений в зависимости от значений v. (Куда направлены ветви параболы и каков знак дискриминанта.) (!!)Придется рассмотреть существование решений первого неравенства при u
> 1 для разных случаев относительно коэффициента при u² функции f(u), т. е. v² − 1 > 0; v² − 1 = 0; v² − 1 < 0.17.10.
Если а — целое, то дискриминант данного уравнения есть квадрат целого числа, т. е. а² − 2а − 19 = n². Отсюда (а − 1)² − n² = 20. Левую часть нужно представить в виде произведения целых чисел.17.11.
Случаи, когда y = 0 нужно рассмотреть отдельно. Определить соответствующие а и для каждого из них решить исходное уравнение. До этого выводов о числе корней исходного уравнения делать не следует.17.12.
Исходное уравнение при y = sin 4x преобразуется к виду(а
+ 3)y² + (2а − 1)y + (а − 2) = 0,где |y
| ≤ 1.Исследуйте отдельно случаи D
= 0 и D > 0, для каждого из которых найдите значения а, удовлетворяющие условию, в силу которого равно восемь решений исходного уравнения (см. условие задачи) попадают на отрезок [−π, π]. (!!)При замене переменной z
= 4x получаем уравнение(а
+ 3) sin² z + (2а − 1) sin z + (а − 2) = 0,или
(а
+ 3)y2 + (2а − 1)y + (а − 2) = 0, где y
= sin z; |y| ≤ 1.Если существует решение второго уравнения y
1 ∈ (−1, 1), т. е. y1 лежит внутри интервала (−1, 1), то этому y1 соответствуют ровно два значения z ∈ (−π, π) и ровно восемь значений x ∈ (−π, π). (Для z период синуса равен 2π, а для x = z/4 период синуса уменьшится в 4 раза и будет равен π/2, т. е. внутри каждого интервала длиной π/2 мы получим два решения для x, а внутри интервала (−π, π) таких решений будет восемь.)17.13.
Если (x, y) — фиксированная точка плоскости и через эту точку проходит кривая семейства, то должно существовать, по крайней мере одно соответствующее ей значение параметра а. Рассмотрев уравнение семейства кривых как уравнение относительно а, мы и получим соответствующие ограничения.К главе 18