Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

1.27. По теореме косинусов и в силу равенства а² = с(b + с) получим b² + с² − 2bc cos А = c(b + с), откуда

cos А = bc/2c.

Данное в условии равенство можно записать так: с² = а² − bc, и сравнить его с теоремой косинусов для угла С. Получим

cos С = b + c/2a.

Нам нужно доказать, что угол А вдвое больше угла С. Вычислим для этого cos 2С и сравним с cos А:

B выражение для cos А, которое мы получили раньше, сторона а не входит. Поэтому заменим в правой части полученной формулы а² на bc + с². Получим

т. е. cos А = cos 2С. Так как cos С = b + c/2a > 0, то угол С острый. Углы А и 2С лежат между 0 и π, т. е. в интервале монотонности косинуса. Таким образом, из равенства косинусов следует равенство углов А = 2С.

1.28. Центр О вписанный окружности лежит на пересечении биссектрис (рисунок сделайте самостоятельно). Поэтому

Подставляя в данное соотношение OA² = OB · OC, получим

Применив к правой части формулу преобразования произведения синусов в сумму, приведем равенство к виду

Заметив, что B + С = π − А, получим

cos BC/2 = 2 sin² А/2 + sin

А/2,

что и требовалось доказать.

1.29. По условию S = а² − b² − с² + 2bc. С другой стороны, S = ½с sin А. Сравнивая эти выражения, получим а² − b² − с² + 2bc = ½ bc sin А.

Воспользуемся теоремой косинусов и заменим а² на b² + с² − 2bc cos А. После приведения подобных и сокращения на bc останется тригонометрическое уравнение

½ sin А = −2 cos А + 2,

которое можно переписать так:

sin А/2 cos А/2 = 4 sin²А/2.

Так как А — угол треугольника, то А лежит в первой четверти и sin А/2 ≠ 0. Наше уравнение принимает вид tg А/2 = ¼.

Ответ. А = 2arctg ¼.

1.30. Пусть О1, О2, О3 — центры квадратов, построенных на сторонах треугольника ABC (рис. P.1.30). Опустим из них перпендикуляры на стороны. Проведем средние линии DE и KE. На отрезках О2K и KE построим параллелограмм KELO2.

Рассмотрим четырехугольники О1

EDO3 и BELO2. При повороте около точки E одного из них на 90° он совпадает с другим (убедитесь в равенстве сторон и углов самостоятельно). Следовательно, отрезки О1О3 и ВО2 равны, что и требовалось доказать.

1.31. Достроим треугольник ABC до параллелограмма так, чтобы сторона AB была диагональю параллелограмма (рис. P.1.31).

Проведем BD1 || AD. Точку пересечения BD1 с диагональю CC1 параллелограмма обозначим через M1. Треугольники MDC и M1BC подобны. Так как MFCF/4, то MC : MM1 = 3 : 2. Следовательно, MD : M1B = 3 : 5. Так как M1B = AM, то AMMD = 5 : 3.

Площадь треугольника AFM в восемь раз меньше площади треугольника ABC, т. е. равна 8 . Высота треугольника AFM (F — середина AB), опущенная из вершины F, в два раза меньше высоты треугольника ABD, опущенной из вершины B. Так как AMAD = 5 : 8, то площадь треугольника AFM относится к площади треугольника ABD как 5 относится к 2 · 8, т. е. как 5 : 16.

Зная, что площадь треугольника AFM равна ⅛, можно теперь найти и площадь треугольника ABD.

Ответ.2/5.

1.32. Способ 1. Пусть R — радиус окружности, а α, β и γ − вписанные углы, опирающиеся соответственно на стороны ABBC и AD (рис. P.1.32). Углы, опирающиеся на одну и ту же дугу, равны (это отмечено на рисунке). Углы DBC и DAC тоже равны, и их нетрудно вычислить: ∠ DBC = ∠ DAC = π − (α + β + γ). По теореме синусов 

AB = 2R sin α, BC = 2R sin β, DC = 2R sin (α + β + γ), AD = 2R sin γ.

Таким образом,

AB · DCAD · BC = 4R² [sin α sin(α + β + γ) + sin β sin γ] = 2R² [cos(β + γ) − cos(2α + β + γ) + cos(β − γ) − cos(γ + β)] = 2R² [cos (β − γ) − cos(2α + β + γ)].

Так как

AC = 2R sin (α + β), BD = 2R sin (α + γ),

то

AC · BD = 4R² sin (α + β) sin (α + γ) = 2R² [cos (β − γ) − cos (2α + β + γ)].

Итак,

AB · DCAD · BCAC · BD.

Способ 2. Введем обозначения: AB = а, BC = bCD = сDA = dAC = eBD = f

. Нужно доказать, что ac + bd = ef. Выберем на диагонали AC точку E так, чтобы угол CBE был равен γ. Тогда треугольники CBE и DBA подобны. Поэтому EC : b = d : f.

Из подобия треугольников ABE и DBC (углы ABE и DBC равны как равносоставленные) получаем AE : а = с : f. Определим из первого соотношения EC, а из второго AE и сложим эти два равенства:

откуда асbd = ef, что и требовалось доказать.

1.33. Продолжим боковые стороны AB и CD трапеции (рис. P.1.33) до пересечения в точке S. Если через S и M (где M — середина BC) провести прямую, то она пересечет AD в точке N, которая является серединой AD.

Из подобия треугольников BSM и ASN имеем

откуда

Так как по условию MNANBM, то BMSM и треугольник SMB равнобедренный. Аналогично доказывается, что треугольник SMC также равнобедренный. Следовательно, угол SMC равен удвоенному углу А, а угол SMB — удвоенному углу D (по свойству внешнего угла треугольника). Но оба этих угла SMB и SMC образуют развернутый угол. Следовательно, сумма углов А и D равна 90°.

1.34. Пусть AB = аMR = x (рис. P.1.34).

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература