На контуре круга
Обычный подход
Большинство пытается решить задачу с помощью теоремы Пифагора, поскольку треугольники
Образцовое решение
Эту задачу можно решить несколькими способами. Один из них — рассмотрение экстремумов. Предположим, что точка
Задачу также можно решить, посмотрев на нее с другой точки зрения. Четырехугольник с тремя прямыми углами является прямоугольником. Отрезок
Задача 4.2
Стандартную колоду из 52 игральных карт делят случайным образом на две стопки по 26 карт в каждой. Как количество красных карт в одной стопке соотносится с количеством черных карт в другой?
Обычный подход
При решении этой задачи, как правило, количество черных и красных карт в каждой стопке представляют следующим образом:
B1 = количество черных карт в стопке 1;
B2 = количество черных карт в стопке 2;
R1 = количество красных карт в стопке 1;
R2 = количество красных карт в стопке 2.
Поскольку общее количество черных карт равно 26, можно записать, что B1 + B2 = 26, а поскольку общее количество карт в стопке 2 равно 26, мы получаем R2 + B2 = 26.
Вычитание второго уравнения из первого, дает: B1 — R2 = 0. Таким образом, B1 = R2, т. е. количество красных карт в одной стопке равно количеству черных карт в другой. Хотя такое решение дает ответ, назвать его изящным нельзя. Наша цель в этой главе — найти такое решение, которое демонстрирует красоту и силу математики.
Образцовое решение
В качестве альтернативы возьмем все красные карты из стопки 1 и обменяем их на черные карты из стопки 2. Теперь все черные карты находятся в одной стопке, а красные — в другой. Таким образом, количество красных карт в одной стопке и количество черных карт в другой стопке должны быть равными. Задачу позволяет решить простая логика — нужно лишь взглянуть на эту задачу с другой точки зрения.
Задача 4.3
Лоэнгрину дали четыре отрезка цепи (рис. 4.2), в каждом из которых три звена. Покажите, как соединить эти четыре отрезка в замкнутую цепь, разомкнув и сомкнув
Обычный подход
Обычно сначала пытаются разомкнуть последнее звено одного отрезка, присоединить его к другому отрезку и получить цепь из 6 звеньев. Затем размыкают звено третьего отрезка и присоединяют его к 6-звенной цепи, получая 9-звенную цепь. Присоединив последний отрезок к 9-звенной цепи, получают 12-звенную цепь, которая, однако,
Образцовое решение
Эта задача хорошо решается с помощью стратегии принятия другой точки зрения. Можно даже сказать, что такой подход просто неоценим в данном случае. Вместо того, чтобы пытаться разомкнуть и замкнуть
Задача 4.4
Какие натуральные числа менее 100 дают остаток 3 при делении на 7 и остаток 4 при делении на 5?
Обычный подход
Рассмотрим ряд натуральных чисел менее 100, которые дают остаток 3 при делении на 7: {3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 49}. Теперь рассмотрим ряд натуральных чисел менее 100, которые дают остаток 4 при делении на 5: {4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99}.
Сравнив эти два ряда, находим три совпадающих числа: 24, 59 и 94.
Образцовое решение