Читаем Том 1. Механика, излучение и теплота полностью

На нижнем рисунке фиг. 33.7 поляризация падающего луча повернута на 90°, так что оптическая ось лежит в плоскости поляризации. Рассмотрим теперь маленькие волны, идущие от поверхности кристалла; они уже не сферические, как в предыдущем случае. Свет вдоль оптической оси движется со скоростью v, потому что поляризация перпендикулярна оптической оси, а свет, движущийся перпендикулярно оси, распространяется со скоростью v поскольку поляризация и оптическая ось параллельны. В двоякопреломляющем материале v≠v, и на нашем рисунке выбран случай v

┴. Более подробный анализ показывает, что волны у поверхности кристалла имеют форму эллипсоидов, большая ось которых совпадает с оптической осью кристалла. Огибающая этих эллиптических волн — волновой фронт — движется через кристалл, как показано на нижнем рисунке фиг. 33.7. У задней поверхности кристалла луч отклоняется на тот же угол, что и у передней, и выходит параллельно падающему лучу, сместившись на некоторое расстояние. Совершенно очевидно, что этот луч не подчиняется закону Снелла и движется довольно необычно. Поэтому его называют необыкновенным лучом.

Если на аномально преломляющий кристалл направить неполяризованный пучок света, он разделится на два луча: обыкновенный, движущийся прямо через кристалл по обычным законам, и необыкновенный, который, пройдя через кристалл, смещается относительно падающего луча. Оба прошедших через кристалл луча линейно поляризованы перпендикулярно друг другу. Этот факт легко установить опытным путем, используя поляроид для определения поляризации вышедших из кристалла лучей света. Можно также подтвердить правильность нашей интерпретации, посылая на кристалл линейно поляризованный луч. Выбирая нужную ориентацию поляризации падающего пучка, мы в одном случае увидим луч, прошедший прямо сквозь кристалл, а в другом — единственный сместившийся луч.

На фиг. 33.1 и 33.2 были представлены самые разные поляризации в виде суперпозиции двух основных, а именно поляризаций по осям х и у с разными амплитудами и фазами. Вместо них можно выбрать и другие пары основных поляризаций. Один из возможных примеров представляют собой поляризации по двум перпендикулярным осям х' и y', повернутым относительно х и у (можно также любую поляризацию представить как суперпозицию случаев а и д на фиг. 33.2). Оказывается, эту мысль можно еще продолжить. Например, любую линейную поляризацию можно представить в виде суперпозиции правой и левой круговой

поляризации с соответствующими амплитудами и фазами (случаи в и ж на фиг. 33.2), поскольку два равных вектора, вращающихся в разные стороны, при сложении дают вектор, осциллирующий вдоль прямой линии (фиг. 33.8).

Фиг. 33.8. Два вектора одной длины, вращающиеся в противоположные стороны, дают при сложении вектор, направление которого не меняется, а амплитуда осциллирует.


Если фазы вращающихся векторов разные, прямая будет наклонена. Таким образом, все графики фиг. 33.1 можно назвать «суперпозициями равного количества право- и левополяризованного света при разных сдвигах фаз». Когда левополяризованный свет отстает по фазе от правополяризованного, направление линейной поляризации меняется. Поэтому оптически активные среды можно в некотором смысле назвать двоякопреломляющими. Свойство оптической активности можно характеризовать и по-другому, говоря, что такие среды имеют разные показатели преломления для света правой и левой круговой поляризации. Суперпозиция право- и левополяризованного света с разными амплитудами дает эллиптически поляризованный свет.

Свет с круговой поляризацией обладает интересным свойством — он переносит момент количества движения (взятый относительно направления луча). Чтобы пояснить это утверждение, предположим, что поляризованный по кругу свет падает на атом, который представляет собой гармонический осциллятор, способный колебаться в любом направлении в плоскости ху. Тогда смещение электрона по оси х отвечает компоненте поля Е

x, а смещение по оси у отвечает компоненте Еу, равной по величине, но отстающей по фазе на 90°. Это означает, что электрон под действием вращающего электрического поля световой волны (фиг. 33.9) будет двигаться по окружности с угловой скоростью ω.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука