Читаем Том 1. Механика, излучение и теплота полностью

Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от z(τ). Чему равно время запаздывания? Обозначим время наблюдения через t (это время в точке наблюдения Р), тогда время τ, которое в точке А соответствует времени t, не будет совпадать с t, а отстает от него на промежуток времени, необходимый свету, чтобы пройти все расстояние от заряда до точки наблюдения. В первом приближении время запаздывания равно R0/c, т. е. постоянной (что неинтересно), а в следующем приближении должно зависеть от z-координаты положения заряда в момент τ, потому что для заряда q, сдвинутого немного назад, запаздывание увеличивается. Этим эффектом мы раньше пренебрегали, если теперь учесть его, то мы получим формулу, пригодную для любых скоростей.

Нам остается выбрать определенное значение t, вычислить с его помощью τ и найти х и у в момент времени τ. Запаздывающие значения х и у обозначим через х' и y', вторые производные от них определяют поле. Итак, τ определяется из уравнений

и

(34.4)

Эти уравнения довольно сложны, но их решение легко получить геометрическим путем. Чертеж даст вам возможность качественно почувствовать, как возникают соотношения, хотя для вывода точных результатов понадобится преодолеть еще немало математических сложностей.

§ 2. Определение «кажущегося» движения

Написанное выше уравнение можно упростить довольно интересным способом. Опустим неинтересный для нас постоянный член R0

/c (это означает только, что мы изменяем начало отсчета времени t на постоянный отрезок) и запишем

(34.5)

Нам нужно найти х' и у' как функции t, а не τ, и это достигается следующим образом: как подсказывает уравнение (34.5), нужно взять истинное движение заряда и добавить время τ, умноженное на константу (скорость света). На фиг. 34.2 показано, что это означает.

Фиг. 34.2. Геометрический способ определения x'(t) из уравнения (34.5.).


Возьмем истинную траекторию заряда (показанную слева) и представим себе, что по мере движения заряд удаляется от точки Р со скоростью с (здесь нет каких-либо релятивистских сокращений и подобных вещей; это просто математическое добавление cτ). Таким путем получится новая траектория, где по оси абсцисс отложено ct, как показано на рисунке справа. (На рисунке изображена траектория довольно сложного движения в плоскости, но движение может происходить не только в плоскости.) Смысл приведенной процедуры состоит в том, что горизонтальное расстояние в правой части фиг. 34.2 в отличие от левой оказывается равным не z, а z+cτ, т. е. ct. Мы нашли, таким образом, график изменения х' (и у') в зависимости от t! Осталось только определить ускорение на кривой, т. е. продифференцировать ее дважды. Отсюда окончательно заключаем: чтобы найти электрическое поле движущегося заряда, нужно взять траекторию движения и заставить двигаться каждую ее точку от точки наблюдения со скоростью с; полученная кривая дает положения х' и у' как функцию t. Ускорение на этой кривой определит электрическое поле в зависимости от t. Можно, если угодно, представить себе, что вся эта «твердая» кривая движется вперед со скоростью с сквозь плоскость зрения, так что точка пересечения с плоскостью зрения имеет координаты х' и у'. Ускорение этой точки и определит электрическое поле! Полученное решение будет не менее точно, чем формула, из которой мы исходили,— это просто ее геометрическое представление.

Если источник совершает относительно медленное движение, как, например, медленно колеблющийся вверх и вниз осциллятор, то при растягивании этого движения со скоростью света получится простая синусоидальная кривая. Отсюда можно получить формулу для поля, создаваемого осциллирующим зарядом, которую мы видели неоднократно.

Более интересный пример — это электрон, движущийся по окружности со скоростью, близкой к скорости света. Если наблюдатель находится в плоскости движения электрона, запаздывающее движение x'(t) имеет для него вид, изображенный на фиг. 34.3. Что это за кривая?

Фиг. 34.3. Кривая зависимости х'(t) для частицы, вращающейся по окружности с постоянной скоростью v=0,94c.


Если мы представим себе радиус-вектор, проведенный из центра окружности к заряду, и если мы продолжим эти радиальные линии чуть-чуть за заряд (совсем капельку, если заряд движется быстро), то мы придем к точке, которая движется со скоростью света с. Поэтому результирующее движение есть движение заряда, прикрепленного к колесу, которое катится назад (без скольжения) со скоростью с; это дает нам кривую, очень похожую на циклоиду, называется она гипоциклоидой.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука