Читаем Том 1. Механика, излучение и теплота полностью

Фиг. 33.9. Действие света с круговой поляризацией на вращающийся заряд.


Направление вектора смещения электрона а в зависимости от восприимчивости осциллятора к действующей на него силе не обязательно совпадает с направлением силы qеЕ, но тем не менее оба вектора вращаются одновременно друг с другом. Напряженность поля Е, вообще говоря, имеет компоненту, перпендикулярную смещению электрона а, так что над системой совершается работа, а кроме того на нее действует крутящий момент τ. Работа, которую он совершает в 1 сек, равна τω. За период Т системе передается энергия τωТ, причем τТ есть момент количества движения, поглощаемый вместе с энергией излучения. Мы видим, таким образом, что луч света правой круговой поляризации, энергия которого равна ℰ, переносит момент количества движения (вектор которого лежит вдоль направления распространения луча), равный по величине ℰ/ω. Действительно, если луч правополяризованного света поглощается веществом, поглотителю передается порция момента количества движения, равная ℰ/ω. Левополяризованный свет несет момент противоположного знака, т. е. -ℰ/ω.

Глава 34 РЕЛЯТИВИСТСКИЕ ЯВЛЕНИЯ В ИЗЛУЧЕНИИ

§ 1. Движущиеся источники

В этой главе мы расскажем еще о ряде эффектов, связанных с излучением, и на этом закончим изложение классической теории света. Проведенный нами в предыдущих главах анализ световых явлений был достаточно полным и подробным. Однако мы не коснулись одного важного в приложениях процесса электромагнитного излучения — мы не исследовали поведения радиоволн в ящике с отражающими стенками размером порядка длины волны или радиоволн, пропускаемых через длинную трубу. Явления, возникающие в так называемых полых резонаторах и волноводах, мы обсудим позднее, причем прежде мы их проиллюстрируем на другом физическом примере — на примере звука. А в остальном изучение классической теории света заканчивается этой главой.

Для всех эффектов, о которых здесь пойдет речь, характерно то, что они связаны с движением источника. Мы не будем больше предполагать, что смещение источника незначительно и его движение происходит с относительно малой скоростью возле фиксированной точки.

Вспомним, что, согласно основным законам электродинамики, электрическое поле на больших расстояниях от движущегося заряда дается формулой

(34.1)

Определяющей величиной здесь является вторая производная единичного вектора еR, направленного к кажущемуся положению заряда. Единичный вектор характеризует положение заряда, конечно, не в тот же момент времени, а то место, где находился бы заряд, если учесть конечную скорость передачи информации от заряда к наблюдателю.

Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой

(34.2)

Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико.

В гл. 28 мы уже говорили, что в производную d2eR'/dt2 входит только изменение направления еR'. Пусть заряд находится в точке с координатами (x, y, z) и ось z лежит вдоль линии наблюдения (фиг. 34.1).

Фиг. 34.1. Траектория движущегося заряда. Истинное положение в момент времени τ есть Т, положение при учете запаздывания есть А.


В данный момент времени τ координаты заряда есть x(τ), y(τ) и z(τ)- Расстояние R с большой точностью равно R(τ)=R0+z(τ). Направление вектора еR' зависит главным образом от х и у и почти совсем не зависит от z. Поперечные компоненты единичного вектора равны x/R и y/R; дифференцируя их, мы получаем члены, содержащие R2 в знаменателе:

Таким образом, на достаточно больших расстояниях существенны только члены с производными х и у. Отсюда

(34.3)

где R0 примерно равно расстоянию до заряда q; определим его как расстояние OP до начала координат (x, y, z). Итак, электрическое поле равно константе, умноженной на очень простую величину — производную координат х и у по t. (Математически можно назвать их поперечными компонентами вектора положения заряда r, но ясности от этого не прибавится.)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука