Сильвестр обозначил свою позицию: «Немало ученых предпочли бы считать обобщенное понятие пространства всего лишь замаскированной формой алгебраической абстракции, но то же можно сказать о нашем представлении бесконечности, или о невозможных линиях, или о линиях, образующих угол, равный 0, в геометрии – понятиях, в пользе и необходимости которых уже никто не сомневается. Доктор Сальмон в своем расширенном изложении теории Мишеля Шаля о характеристиках поверхностей, мистер Клиффорд в вопросах о вероятности и я сам в теории о разбиении числа, а также в моей статье о барицентрической проекции ощущали и получали доказательства практической пользы четырехмерного пространства, как если бы оно было допустимо».
Многомерное пространство
В итоге в споре победил Сильвестр. Современные математики допускают существование явления, если оно логически непротиворечиво. Это может противоречить физическому опыту, что не имеет отношения к математической сущности. Тогда многомерные пространства ничуть не менее реальны, чем привычное нам пространство с тремя измерениями, поскольку мы можем без труда дать ему формальное определение.
Теперь математика многомерных пространств стала чисто алгебраической дисциплиной и основана на явных обобщениях, начинающихся с маломерных пространств. Например, любая точка на плоскости (в двумерном пространстве) может быть описана двумя координатами, а любая точка в трехмерном пространстве – тремя координатами. Отсюда остается сделать короткий шаг к описанию точки в четырехмерном пространстве как набору четырех координат и в более общем плане к определению точки в
Аналогичные алгебраические операции позволят вычислить расстояние между двумя любыми точками в
Например, окружность на плоскости или сфера в трехмерном пространстве состоят из всех точек, что лежат на фиксированном расстоянии (радиус) от выбранной точки (центр). Явным аналогом для
В наше время такая точка зрения называется линейной алгеброй. Она используется не только в математике, но и в других областях науки, особенно в инженерии и статистике. Также она является стандартной техникой вычислений в экономике. Кейли утверждал, что его матрицы вряд ли получат какое-то практическое применение. Конечно, он ошибался.
К 1900-м гг. предсказание Сильвестра воплотилось в жизнь, особенно с освоением тех областей математики и физики, где концепция многомерного пространства стала серьезным подспорьем. Одной из таких областей стала теория относительности Эйнштейна – своего рода гениальный прорыв в четырехмерной геометрии пространства-времени. В 1908 г. Герман Минковский осознал, что три координаты обычного пространства, объединенные с еще одной, временн
Четырехмерный гиперкуб, проекция на плоскость
Последующее включение силы притяжения в теории относительности потребовало широкого применения революционных римановских геометрий, хотя и модифицированных так, чтобы удовлетворять описанию Минковского для геометрии плоского пространства-времени. То, что происходит с пространством и временем в отсутствие массы, которая вызывает гравитационные искажения, Эйнштейн смоделировал как кривизну.