Главное преимущество многомерной геометрии в том, что человечество получило возможность визуализировать такие сверхсложные задачи, которые в принципе увидеть нельзя. А поскольку эволюционно наш мозг приспосабливался именно к визуальному мышлению, такой прием чаще приводит к неожиданным прозрениям, гораздо труднее достигаемым другими методами. Математические концепции, изначально не имеющие прямого отношения к реальному миру, часто обладают гораздо более глубокими, хотя и незримыми, связями. И эти скрытые связи делают математику такой полезной.
Прекрасный пример использования многомерных пространств – ваш мобильный телефон. То же относится к выходу в интернет, кабельному или спутниковому телевидению и практически к любой современной технологии, обеспечивающей обмен информацией. Все современные коммуникации – цифровые. Информация – даже разговоры по телефону – переводится в сочетания нулей и единиц – двоичные числа.
От коммуникаций не будет большого толку, если они ненадежны: отправленное послание должно точно соответствовать полученному. Электрические послания по проводам не могут обеспечить такую надежность из-за помех, возникающих вследствие интерференции или даже космического луча, который может вызвать ошибки. И инженерам-электронщикам пришлось прибегнуть к математическим методам для такой кодировки сигналов, где ошибки будут не только распознаваться, но и исправляться. А основой таких кодов стала математика многомерных пространств.
Такие пространства были открыты, потому что строку, скажем, из десяти двоичных чисел, или бит, такую как 1001011100, выгоднее рассмотреть как точку в десятимерном пространстве с координатами, упрощенными до 0 или 1. Многие важные вопросы о кодах, обнаруживающих и исправляющих ошибки, лучше всего решать в рамках геометрии такого пространства.
Геометрия для пары двоичных чисел
Например, мы можем обнаружить (но не исправить) одну ошибку, если закодируем каждое послание, заменяя каждый 0 на 00 и каждую 1 на 11. Тогда такое послание, как 110100, превратится в 111100110000. Если его получат в виде 1110
00110000, с ошибкой в четвертом бите, мы поймем: что-то не так, ведь выделенная жирным пара 10 не должна там присутствовать. Но нам неизвестно, должно ли это быть 00 или 11. Это можно точно проиллюстрировать на двумерной фигуре (где 2 – длина, которая соответствует кодовым словам 00 и 11). Рассматривая биты в кодовых словах как координаты, относящиеся к двум осям (соответственно для первой и второй цифр в кодовом слове), мы можем начертить схему, где настоящие кодовые слова 00 и 11 окажутся в диагонально противоположных углах квадрата.Код, исправляющий ошибки, использует строки длиной 3