Математики предпочитали более гибкое понятие размерности и пространства, причем на рубеже XIX–XX вв. сама математика, судя по всему, всё больше требовала принятия многомерной геометрии. Теория функций двух комплексных переменных как естественное продолжение комплексного анализа нуждалась в представлении о пространстве с двумя комплексными измерениями. Но каждое такое измерение сводится к двум действительным измерениям, а значит, нравится вам это или нет, вы рассматриваете четырехмерное пространство. Римановское многообразие и алгебра многих переменных обеспечили дальнейшую мотивацию для исследований в этом направлении.
Обобщенные координаты
Однако еще одним мощным стимулом к принятию многомерной геометрии стало толкование механики в терминах обобщенных координат, сделанное Гамильтоном в 1835 г. Это исследование было инициировано Лагранжем в его «Аналитической механике» в 1788 г. Механическая система имеет столько же координат, сколько у нее степеней свободы – иными словами, возможностей изменять свое состояние. По сути, число степеней свободы – не что иное, как замаскированное измерение.
Например, необходимо шесть обобщенных координат, чтобы описать конфигурацию элементарного велосипеда: одна для угла, под которым руль крепится к раме, две для угловой позиции каждого из колес, еще одна для педальной оси и еще две для точек вращения педалей. Конечно, велосипед – трехмерный
К 1920 г. это соперничество физиков, математиков и механиков благополучно разрешилось, и использование геометрического языка для задач со многими переменными – многомерной геометрии – уже не вызывало такого возмущения, разве что у некоторых философов. А к 1950 г. наука продвинулась вперед настолько, что для математиков стало совершенно естественным формулировать всё подряд в
Язык многомерных пространств стремительно распространился во все области науки, захватив даже такие отрасли, как экономика и генетика. Сегодняшние вирусологи, например, воспринимают вирусы как точки в пространстве последовательности ДНК, у которых запросто может оказаться несколько сотен измерений. Под этим они подразумевают, что геном этих вирусов состоит из нескольких сотен оснований ДНК, и тогда геометрический образ вируса оказывается не просто отвлеченной метафорой: он становится эффективным способом решения проблемы.
Ничто из этого, однако, не означает, что существует мир духов, что наконец-то у привидений есть свой дом или что в один прекрасный день нас может (как описал в своей «Флатландии» Эдвин Эбботт) навестить Гиперсфера – существо из Четвертого измерения, принявшее для нас облик сферы с загадочно переменчивыми размерами, способное сжиматься до точки и исчезать из нашей Вселенной. Однако физики, ведущие исследования в теории суперструн, в последнее время склоняются к тому, что на самом деле наша Вселенная может иметь
Многомерная геометрия стала одной из самых впечатляющих областей, где, похоже, математики утрачивают всякую связь с реальностью. Коль скоро физическое пространство трехмерно, как может существовать пространство с четырьмя и более измерениями? И даже если их можно описать математически, какой от этого прок?
Главной ошибкой здесь является восприятие математики как очевидного, буквального толкования реальности, наблюдаемой непосредственно. Но фактически мы окружены объектами, которые лучше всего будут описаны с помощью большого количества переменных, «степеней свободы» этих объектов. Например, для описания положения скелета человека требуется 100 переменных. Математически естественное описание таких объектов происходит в терминах многомерных пространств, с одним измерением для каждой переменной.
Математикам потребовалось много времени, чтобы формализовать такие описания, и еще больше на то, чтобы убедить остальных, что от этого есть польза. Сегодня всё это так глубоко вошло во все области науки, что используется практически на рефлекторном уровне. Подходы стандартны для экономики, биологии, физики, инженерии, астрономии… список можно продолжать бесконечно.