Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Данные рынка ценных бумаг, представленные в системе координат


Глава 7. Такие разные числа

Начала теории чисел

Несмотря на увлечение

геометрией, математики никогда не теряли интереса к числам. Они стали задавать всё более сложные вопросы и на многие из них нашли ответы сами. Ряд вопросов удалось решить позже благодаря новым методам. А некоторые остались нерешенными по сей день.

Теория чисел

Числа всегда нас завораживали. Понятные, незатейливые, 1, 2, 3, 4, 5… Кажется, что может быть проще? Но под этой внешней простотой таятся неведомые глубины, и большинство неприступных вопросов в математике касаются самых очевидных свойств целых чисел. Эта область известна как теория чисел, и на поверку она оказалась очень сложной, поскольку ее составляющие касаются самых основ науки. Как раз простота целых чисел и оставляет так мало возможностей для сложных методов.

Самые первые шаги в теории чисел – которые доказаны фактами, а не одними предположениями – обнаруживаются в трудах Евклида, где эти идеи слегка завуалированы под геометрию. Теория чисел была выделена в отдельную область математики древним греком Диофантом, отрывки работ которого дошли до нас в более поздних списках. Теория чисел пережила период бурного развития в 1600-х гг., а благодаря работам Ферма и дальнейшим разработкам Леонарда Эйлера, Жозефа-Луи Лагранжа и Карла Фридриха Гаусса она превратилась в обширную самостоятельную область математики, тесно связанную со многими науками, на первый взгляд не имеющими к ней отношения. Именно эта связь была использована в конце ХХ в. для ответа на многие – хоть и не все – древние загадки, включая самую известную и интригующую: предположение Ферма, сформулированное им около 1650 г. и известное как Великая теорема (или Последняя теорема).

Большую часть своей истории теория чисел касалась сугубо математических научных трудов и почти не влияла на реальный мир. Если когда-то и существовала ветвь математической мысли, интересная лишь отшельникам, живущим в башнях из слоновой кости, то это могла быть только теория чисел. Однако всё изменилось с изобретением компьютеров. Они работают с электронным представлением целых чисел, и проблемы и возможности, связанные с ними, постоянно возвращают ученых к теории чисел. После 2500 лет существования в виде игр чистого разума теория чисел стала частью реальной жизни.

Простые числа

Любой, кому доводилось перемножать целые числа, замечал их фундаментальные отличия.

Многие числа можно разделить на меньшие части, из которых искомое получается путем их перемножения. Например, 10 можно получить умножением 2 на 5, а 12 равно 3 × 4. Но некоторые числа так разделить невозможно. Мы не можем выразить 11 как произведение двух меньших целых чисел, то же относится к 2, 3, 5, 7 и многим другим.

Составные числа – те, которые можно выразить как произведение двух меньших. Простые числа – те, которые нельзя так выразить. Согласно этому определению, 1 должно считаться простым числом, но в силу важных причин его решено выделить в отдельный класс и обозначать как единицу

. Итак, первые простые числа выглядят так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41

По этому списку видно, что для простых чисел нет очевидного шаблона (за исключением того, что все, кроме первого, нечетные). Кажется, они появляются беспорядочно, и нет способа предсказать, каким будет следующее в списке. Но даже тогда несомненно, что это число всё же можно определить – одно за другим проверяя все последующие, пока снова не найдете простое.

Несмотря или, скорее, благодаря своему беспорядочному распределению они жизненно важны в математике. Они являются основными строительными блоками для всех прочих чисел, в том смысле, что большие числа получаются умножением меньших.

Химия утверждает, что любая молекула, какой бы сложной она ни была, состоит из атомов – неделимых частиц материи. А математика говорит нам, что любое число, каким бы большим оно ни было, состоит из простых – неделимых. Простые числа – это атомы теории чисел.

Это свойство простых чисел очень полезно, потому что в математике многие вопросы могут быть решены для всех целых чисел, если их решить для простых чисел, а простые числа имеют такие особые свойства, что иногда облегчают процесс. Эта дуальность простых чисел – простота, но непредсказуемость – всегда была предметом любопытства ученых.

Евклид

Евклид описал простые числа в книге VII «Начал» и доказал три их ключевых свойства. В современном изложении это звучит так.

• Любое число можно представить как производное простых чисел.

• Это выражение будет уникальным, за исключением порядка, в котором появляются простые числа.

• Простых чисел бесконечно много.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература