Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Предложение 20, книга IX, утверждает: «Простых чисел существует больше всякого предложенного количества простых чисел». В современном изложении это значит, что множество простых бесконечно. В доказательство можно привести пример: представьте, что существует только три простых числа: a, b и c. Перемножьте их и прибавьте единицу, вот так: abc + 1. Это число должно делиться на какое-то простое, но оно не может быть одним из этих трех первоначальных, поскольку они нацело делят abc, но ни одно из них не сможет также разделить abc + 1, ведь тогда им придется делить еще и разницу, которая равна 1. Получается, что мы обнаружили еще одно простое число, а это противоречит предположению о существовании только трех простых чисел a, b, c.

Хотя в доказательстве Евклида использовано всего три числа, та же идея работает и для более длинного списка. Перемножьте все простые числа в нем, добавьте единицу, затем возьмите несколько простых множителей и проверьте результат: вы всегда сгенерируете новое число, которого нет в списке. То есть невозможно составить полный законченный перечень простых чисел.

НАИБОЛЬШЕЕ ИЗВЕСТНОЕ ПРОСТОЕ ЧИСЛО

Наибольшего простого числа не существует, но в сентябре 2006 г. было найдено наибольшее известное простое число, равное 232 582 657 – 1, в котором есть 9 808 358 десятичных цифр

[5]. Числа вида 2p – 1, где p – простое число, называются числами Мерсенна, по имени ученого, в своем труде «Физико-математические размышления» (1644 г.) показавшего, что эти числа являются простыми для р = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 и 257 и составными для всех остальных целых чисел, меньших 257.

Сейчас существуют специальные высокоскоростные методы проверки таких чисел, и мы знаем о пяти ошибках Мерсенна. Его числа получаются составными, если р = 67 и 257, и есть три пропущенных им простых числа с р = 61, 89, 107. На сегодня известно 49 чисел Мерсенна. Поиски новых могут считаться хорошей проверкой новых компьютеров, но не имеют практического значения.

Диофант

Мы уже упоминали Диофанта Александрийского в связи с алгебраическими символами, но самое большое влияние на математику он оказал в области теории чисел. Он предпочитал изучать более глобальные вопросы, а не свойства отдельных чисел, хотя его ответы как раз и представляют собой отдельные числа. Например, «найдите три таких числа, чтобы их сумма, а также сумма любых двух из них являлась полным квадратом». Его ответ был 41, 80 и 320.

Для проверки: сумма всех трех 441 = 212.

Сумма каждой пары: 41 + 80 = 112

, 41 + 320 = 192 и 80 + 320 = 202.

Одним из самых известных уравнений, решенных Диофантом, является любопытное изложение теоремы Пифагора. Мы можем выразить ее алгебраически: если у прямоугольного треугольника со сторонами a, b, c сторона с – самая длинная, то a2 + b2 = c

2. Найдено несколько особенных прямоугольных треугольников, у которых стороны – целые числа. Самым простым и известным является треугольник, у которого стороны a, b, c соответственно равны 3, 4, 5; здесь 32 + 42 = 9 + 16 = 25 = 52. Следующий самый простой пример: 52 + 122 = 132.


Прямоугольный треугольник со сторонами 3, 4 и 5 единиц


На самом деле таких пифагоровых троек бесконечное множество. Диофант нашел все возможные решения с целыми числами, которые мы можем сейчас записать в виде уравнения a2 + b2 = c2. Его метод состоит в том, чтобы взять любые два целых числа и получить разницу между их квадратами, удвоить их произведение и сложить их квадраты. Три таких числа обязательно составляют пифагорову тройку, и все треугольники, полученные таким путем, обеспечат нас возможностью строить по ним другие тройки, если все три числа умножить на одинаковую константу. Например, если взять числа 1 и 2, мы получим знаменитый треугольник со сторонами 3, 4 и 5 единиц. Соответственно, поскольку есть бесконечно много способов выбрать эти два числа, существует бесконечное множество пифагоровых троек.

ФермА

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература