Одной из них стало известное утверждение, что если
Кажется маловероятным, что, даже если это доказательство существовало, оно было корректно. Первым и пока единственным стало доказательство Эндрю Уайлса, найденное в 1994 г. Оно использует сложнейшие абстрактные методы, разработанные только в ХХ в.
После Ферма многие выдающиеся математики трудились над развитием теории чисел, среди них Лагранж и Эйлер. За это время удалось найти доказательство многих из сформулированных, но не доказанных Ферма теорем.
Гаусс
Следующий важный шаг в теории чисел сделал Гаусс, опубликовавший в 1801 г. свой шедевр «Арифметические исследования». Книга сразу обеспечила теории чисел ведущую роль в математической науке. Отныне и впредь она оставалась ключевым компонентом математического мейнстрима. Гаусс в основном занимался собственными, новыми исследованиями, но также сумел заложить основы современной теории чисел и систематизировать идеи предшественников.
Одной из самых важных фундаментальных перемен была простая, но великолепная идея –
Вот как выглядит идея Гаусса. Для целого числа
если разница
Чтобы передать дух идеи Гаусса, часто прибегают к выражению «арифметика часов». На часах число 12 можно считать эквивалентным 0, поскольку каждые 12 часов их значения повторяются (для континентальной Европы или военных более привычны 24 часа). Семь часов после шести часов будут обозначаться не 13, а 1 час, и по системе Гаусса 13 ≡ 1 (mod 12). Модульная арифметика подобна часам, для которых потребуется
«Арифметические исследования» используют модульную арифметику как основу для более глубоких идей, о трех из которых мы упомянем в этой книге.
Значительная ее часть описывает дальнейшее развитие наблюдений Ферма о том, что простые числа вида 4
Следующая тема – закон квадратичной взаимности, завороживший и лишивший Гаусса покоя на долгие годы. Отправной точкой стал простой вопрос: как выглядят полные квадраты чисел по заданному модулю? Предположим, что модуль равен 11. Тогда получается последовательность квадратов (для чисел меньше 11):
0 1 4 9 16 25 36 49 64 81 100,
откуда, уменьшая (по mod 11), получаем:
0 1 3 4 5 9,
где каждое число, не равное 0, появляется дважды. Эти числа и есть