Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Еще одним источником трудностей стали комплексные числа, где – как мы уже видели – такие естественные функции, как квадратный корень, имеют два значения, а комплексные логарифмы – бесконечное множество таковых. Очевидно, что логарифм должен быть функцией, но когда есть бесконечное множество значений, по какому правилу мы получаем f(z) из z? Выходит, таких правил тоже должно быть бесконечно много, и все одинаково годные. Для разрешения всех этих умозрительных разногласий математикам предстояло переломать немало копий. И не кто иной, как Фурье, сумел разом решить их, предложив гениальный ход: расписать любую функцию через бесконечный ряд синусов и косинусов, открытый им в ходе изучения теплопроводности.

Благодаря своей интуиции ученого Фурье понял, что его метод должен быть универсален. Теоретически вы можете представить себе, что удерживаете температуру металлического стержня на значении 0° на одной половине, но при этом сохраняете 10°, или 50°, или сколько необходимо, на остальной его длине. Физиков до сих пор не интересовали разрывные функции, чьи формулы внезапно меняются. Они вообще не имели обыкновения работать с формулами. Мы прибегаем к ним для отображения физической реальности, но это всего лишь техника, наш образ мышления. Конечно, температура окажется иной на стыке этих двух зон, но математические модели всегда имеют какие-то допущения по отношению к физической реальности. Метод Фурье для тригонометрических рядов, приложенный к разрывной функции такого рода, судя по всему, принес ощутимые результаты. Стальные стержни действительно продемонстрировали точно такое распределение температуры, как предсказывало его уравнение теплопроводности, решенное с помощью тригонометрических рядов. В своей «Аналитической теории тепла» он четко описал свою позицию: «В общем, функция f(x) представляет последовательность значений, или ординат, каждая из которых произвольна. Мы не предполагаем, что эти ординаты подлежат общему закону. Они взаимодействуют между собой каждый раз по-своему».


Прямоугольная волна и некоторые ее Фурье-аппроксимации


Отважное утверждение; к сожалению, приведенное доказательство идеи не имело достаточно убедительной математической базы. Фактически оно оказалось еще более ошибочным, чем аргументы Эйлера или Бернулли. Если утверждение Фурье соответствовало истине, то его ряды в итоге могли стать общим законом для разрывных функций. Функция, приведенная выше, со значениями 0 и 1, имеет периодическую родственную прямоугольную волну. И эта волна характеризуется единственным рядом Фурье, причем вполне изящным, работающим одинаково надежно и там, где функция равна 0, и там, где она равна 1. Иными словами, функция, которая кажется представленной двумя разными законами, может быть переписана в рамках одного правила.

Мало-помалу математики XIX в. научились разделять разные концептуальные вопросы в этой сложнейшей области. Первым стало значение самого термина «функция». Вторым – разные способы представления функций: в виде формулы, степенного ряда, ряда Фурье и т. д. Третий вопрос – какими свойствами обладают функции. Четвертый – какое представление функции гарантирует эти свойства. Простой многочлен, например, определяет непрерывную функцию. А обычный ряд Фурье, судя по всему, нет.

Очень быстро анализ Фурье превратился в тест для самой идеи функции. Это обострило проблемы, и важность приобрели скрытые различия технических приемов. Не кто иной, как Дирихле, в 1837 г. предложил современное определение функции в статье, посвященной рядам Фурье. В результате он согласился с Фурье: переменная y является функцией другой переменной x, если для каждого значения

x (в определенном диапазоне) задано единственное значение y. Он недвусмысленно утверждал, что здесь не нужны специальный закон или формула – достаточно, чтобы у можно было определить некой четко прописанной последовательностью математических действий, примененных к x. На тот момент должен был казаться экстремальным пример, приведенный им ранее, а именно в 1829 г.: функция f
(x) принимает одно значение, когда x – рациональное число, и другое, когда x – иррациональное. Эта функция разрывная в каждой своей точке. (В наше время функции, подобные этой, рассматриваются как довольно невинные, так как возможно гораздо худшее поведение.)

Для Дирихле квадратный корень не был одной двузначной функцией. Это были две однозначные функции. Для действительного x это естественно – но не существенно: взять положительный квадратный корень как одну из них и отрицательный как другую. Для комплексных чисел нет очевидного естественного выбора, хотя какое-то число решений можно найти, чтобы облегчить жизнь.

Непрерывные функции

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература