Читаем Вначале была аксиома. Гильберт. Основания математики полностью

И именно тогда в Гёттинген приехал молодой Джон фон Нейман, чтобы поработать в качестве помощника Гильберта. Блестяще защитив докторскую диссертацию по теории множеств, он начал читать лекции по функциональному анализу вместе с Эрхардом Шмидтом в Берлине. В то время Гильберт пытался найти рациональную математическую модель для квантовой механики; но его аксиоматический подход развивался медленно, потому что ученый страдал злокачественной анемией (смертельным заболеванием, от которого он исцелился благодаря нетрадиционным методам). В 1926-1927 году Гильберт попросил своего ассистента по физике Лотара Нордгейма разложить для него по полочкам суть последних исследований, чтобы иметь возможность читать курс квантовой механики, применяя свой любимый аксиоматический метод. Фон Нейман вдохнул жизнь в проект. Под предводительством Гильберта они втроем ринулись искать строгое математическое оформление. Так, в 1927 году они вместе написали статью «Об основаниях квантовой механики». Гильберт хотел заставить работать интегральную формулировку физических проблем, более практичную, чем дифференциальный вариант, выраженный посредством волнового уравнения или дискретной версии в матричных терминах. Так же как и венгерский физик Корнелий Ланцош (1893-1974) в 1926 году (что любопытно, за месяц до того, как Шрёдингер опубликовал свое знаменитое уравнение), Гильберт, Нордгейм и фон Нейман разработали квантовую механику, пользуясь интегральными уравнениями. Однако результат этого первого приближения не был удовлетворительным, поскольку они не смогли избежать тупика дельты Дирака, чтобы перейти от одной формулировки к другой.

Фон Нейман закончил работу по аксиоматическому обоснованию квантовой механики в одиночку. Он сделал это в период с 1928 по 1932 год, опубликовав серию из пяти статей и монументальный трактат «Математические обоснования квантовой механики». Чтобы придать прочную математическую основу квантовой теории, он отказался от использования дельта-функций Дирака и от предпочтения интегральных уравнений Гильберта. У него было другое оружие: функциональный анализ. Он создал абстрактное аксиоматическое обрамление, гильбертово пространство, которое включало в себя частные матричный и волновой случаи.




«ОСНАЩЕННЫЕ» ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука