Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Гильберт еще в начале века установил основы пространства бесконечной размерности. Но волей судеб такая абстрактная математическая теория, задуманная с опережением в 20 лет, подошла к замку квантовой механики. С тех пор математическая структура квантовой физики сопряжена с гильбертовым пространством. Описание состояния квантовой системы делается через вектор этого пространства. И физические величины изучаются с помощью операторов, определенных в гильбертовом пространстве. В результате появления квантовой механики теория гильбертовых пространств оказалась аксиоматически обоснованной, чему Гильберт был свидетелем.


ГЛАВА 4


Кризис оснований


С развитием математической логики и теории множеств удалось приблизиться к понятию, которое до той поры казалось бесполезным, — бесконечность. Но при этом углубилась трещина, проходящая по основанию математики. Наличие многочисленных парадоксов показало, что здание математики построено на песке. Тогда математики включились в гонку переоснования своей науки. Некоторые ученые встали на сторону логицизма Фреге и Рассела, другие разделились на две непримиримые группы: лидером интуиционистов стал Брауэр, а формалистов возглавил Гильберт.

В 1920 году Гильберт направился в беспокойные воды оснований математики и до конца карьеры развивал исключительно эту область. В некоторой степени ученый с удвоенными усилиями возобновил свое исследование оснований математики, хотя на этот раз он был немного более амбициозен, чем 20 лет назад. Он действовал не в одиночку. Его верными оруженосцами стали Пауль Бернайс (1888-1977), один из его ассистентов в Гёттингене, и Вильгельм Аккерман (1896-1962), преподаватель средней школы, его бывший ученик (Гильберт отказался дать ему должность в университете, узнав, что тот намеревается обзавестись семьей, поскольку, по его мнению, это отвлекло бы его от исследовательской деятельности). Важной составляющей этой работы в долгий межвоенный период стали оживленные дискуссии немецкого математика и его ближайших коллег с виднейшими европейскими математиками, которые придерживались противоположных взглядов.

Началом размышлений вокруг предмета математики исторически считается последняя четверть XIX века. Однако любопытство в отношении природы математического знания не ново, ему 2000 лет. Первый кризис оснований произошел в Древней Греции, когда разрушилась пифагорова арифметика. Пифагорейцы полагали, что все числа рациональны, но вскоре выяснилось, что существуют также иррациональные числа (как V2). Открытие этих неизмеримых чисел вызвало раскол в их математике. Рациональные числа не полностью описывали действительность. Континуум действительных чисел (например, прямая) образован не дискретным набором индивидуальных атомов. Работы Евдокса (IV век до н.э.) по обоснованиям примирили сознание с иррациональной бесконечностью и заложили фундамент, на котором была воздвигнута евклидова геометрия.

Работы, связанные со вторым кризисом оснований, уже в XX веке разъясняли, в чем заключаются метод, строгость и истина новой математики — скорее аксиоматичной, чем интуитивной, скорее экзистенциальной, чем конструктивной. Нужно понимать, что не избежал Гильберт и подводных камней. В их числе выделим ряд антагонических понятий математики, которые возникли не из ничего, а уходят корнями в историю развития самой точной из наук. Распространение математического анализа с начала XIX века, наряду с зачатками теории множеств и математической логики, — это путеводная нить дисциплины, которая стала называться философией, или основаниями математики. Но вернемся на некоторое время к истокам.



БОГ — МАТЕМАТИК?

Платонизм — изначальная философия математики. Приверженцами этой позиции среди прочих были Платон, Кантор, Гёдель... Любопытно, что первым платоником был не Платон, а Пифагор, который слепо верил, будто все есть число и математические объекты реально существуют. Как числа, так и треугольники или окружности существуют сами по себе, независимо от их толкования и нашего представления о них. Неоплатоники во главе с Блаженным Августином (IV век) утверждали, что бесконечное количество чисел в действительности существует в божественном разуме. И кому хватило бы глупости утверждать, будто Бог прекращает счет на каком-то числе, каким бы большим оно ни было?

Перенесение термина платонизм из области философии в математику произошло на лекции, которую в 1934 году читал Пауль Бернайс, первый помощник Гильберта. Бернайс хотел дать возбуждающее интерес название способу восприятия современной математики, в которой математические объекты не строятся, а понимаются как заданные. Для Кантора, например, реальность чисел была намного ощутимее реальности чувственного мира, поскольку числа существуют в виде вечных идей божественного интеллекта. Гёдель пошел еще дальше и рассматривал математические множества как объекты настолько же реальные, как и физические тела. Математики-платоники, имя которым легион, не изобретают математические теоремы, а открывают их.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука