Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Квантовая механика фон Неймана, безупречная для математиков, столкнулась с тем, что физики предпочитали квантовую механику Дирака, которая оказалась более полезной, несмотря на отсутствие строгости. Благодаря работам Лорана Шварца и Александра Гротендика по функциональному анализу, в 1950-1960 годы дельта-функции приобрели статус математической природы, формализовавшись как обобщенные функции, или распределения. Так формализм Дирака перестал быть математически подозрительным, поскольку вошел в состав «оснащенных»гильбертовых пространств (или триплетов Гельфанда). Идея состоит в том, чтобы связать лучшее в формализме фон Неймана (строгое гильбертово пространство) и лучшее в формализме Дирака (полезная дельта-функция) внутри одной непротиворечивой математической структуры. С этой целью пытаются пойти дальше гильбертова пространства и включить такие своеобразные объекты, как дельта-функция, но не теряя в то же время хорошей геометрии гильбертова пространства. Решение заключается в рассмотрении структуры вокруг пространства, следуя духу теории распределений: взять обычное гильбертово пространство и оснастить его двумя другими пространствами — одним поменьше и другим побольше, — которые содержат соответственно все хорошие функции (тестовые функции) и все плохие функции (своеобразные функции, такие как Дирака). Множество из этих трех пространств называют«оснащенным»гильбертовым пространством, или триплетом Гельфанда.



Математические пространства, на которых были построены матричная и волновая механика, были очень разными: одно было дискретным и алгебраическим, другое — непрерывным и аналитическим. Как убедился фон Нейман, нет ничего удивительного в том, что их унификация не может быть достигнута без некоторого насилия над формализмом и математикой. Однако он заметил, что пространства функций, определенных в них, были в основном идентичными. Состояния атома были представлены в матричной механике посредством последовательностей чисел суммируемого квадрата, так что функциональное пространство, которое стояло за этим, было i2, то есть гильбертовым пространством по определению. Волновые функции волновой механики всегда относились к интегрируемому квадрату, то есть принадлежали функциональному пространству L

r И для этих двух пространств действовала теорема Фишера — Риса, хорошо известная математикам с 1907 года и гласящая, что оба эти пространства изоморфны. Так фон Нейман решил головоломку математической эквивалентности квантовых механик, показав, что механика Гейзенберга (сосредоточенная на матрицах и суммах) и механика Шрёдингера (сосредоточенная на функциях и интегралах) математически эквивалентны, поскольку являются вычислениями в двух изоморфных, идентичных гильбертовых пространствах.

До этого времени под гильбертовым пространством понималось одно из двух конкретных пространств lb2

или Lr Фон Нейман первым задумал абстрактное гильбертово пространство в современном его понимании. Избегая конкретных представлений, он работал с понятиями, полученными из аксиом, и пришел к распространению спектральной теории Гильберта в соответствии с квантовыми потребностями.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука