Совершенно ясно, что, если оба множества А и В конечны, то существование между ними и одно-однозначного, и сюръективного соответствий возможно, только если оба множества содержат одинаковое количество элементов. Поясню: наличие одно-однозначного (инъективного) соответствия означает, что количество элементов множества В равно количеству элементов множества А или больше его, а наличие сюръективного соответствия предполагает, что большее или равное число элементов содержит множество А (поскольку каждый элемент множества В может быть связан с несколькими элементами множества А). В сочетании эти два условия означают, что, если А и В – конечные множества, то количество элементов в них должно быть одинаковым.
Можно продемонстрировать, что соответствие между множеством футболистов и множеством манекенщиц является одновременно одно-однозначным и сюръективным тогда, и только тогда, когда оба эти множества содержат одно и то же количество элементов, как в следующем примере (приведенном для тех, кто тоскует по прошлому):
Вот еще один пример:
В нем также имеются одно-однозначное и сюръективное соответствие, и нам даже не пришлось привлекать футболистов или манекенщиц.
Теперь, прояснив все эти вопросы, вернемся к бесконечным множествам. Исходя из изложенного выше, кажется естественным дать следующее определение равенства количества элементов двух множеств (будь то конечных или бесконечных):
Два множества А и В имеют равную мощность, если между элементами множества А и элементами множества В существует некоторое (любое) соответствие, одновременно одно-однозначное (инъективное) и сюръективное.
Что же это за «мощность»? Возможно, вы помните, что мы уже упоминали ее некоторое время назад. Смысл мощности конечных множеств вполне ясен.
В случае конечных множеств мощность – это просто вычурное обозначение «количества элементов множества». Например, множество A = {17, 42, 1729, 1 234 321} содержит четыре элемента; следовательно, его мощность (которую называют также кардинальным числом) равна 4. Это утверждение можно записать следующим образом: #A = 4[47]
.Однако в случае бесконечных множеств понятие «количества элементов множества» не очевидно и
Парадокс Галилео Галилея
В начале XVII в. Галилео Галилей описал парадокс, который был назван его именем. В парадоксе Галилея речь идет об одно-однозначном и сюръективном соответствиях между множеством натуральных чисел {1, 2, 3, 4…} и множеством полных квадратов {1, 2, 4, 9, 16…}. Из элементов этих множеств можно составить пары, как показано в приведенной ниже таблице. Должно быть очевидно, что для каждого элемента множества А существует один, и только один, соответствующий ему элемент множества В, и наоборот:
Возникающий здесь парадокс состоит в том, что множество натуральных чисел и его собственное подмножество – то есть подмножество, не равное самому этому множеству[48]
, в данном случае множество полных квадратов, – имеют одинаковую мощность (то есть между ними существует одно-однозначное и сюръективное соответствие). Как такое может быть, если натуральных чисел больше, чем квадратов, то есть в одном множестве должно быть больше элементов, чем в другом? Как же они могут быть равномощными?!Георг Кантор
© Morphart Creation / Shutterstock.com
Галилео Галилей
© Morphart Creation / Shutterstock.com
Положение или предположение, противоречащее общепринятому мнению; утверждение или ощущение, кажущееся противоречивым или идущим вразрез со здравым смыслом; нечто выглядящее или представленное абсурдным, но могущее быть истинным.
Как я согласен с Нильсом Бором! Парадоксы прекрасно помогают как следует встряхнуть процесс размышлений.
Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы