Читаем Всемирный разум полностью

Возможно, вы не поверите, что в капиллярах имеется достаточно места, однако оно есть. На иллюстрации видно, что диаметр каждого проводка – менее одного микрона (миллионной доли метра), то есть существенно меньше, чем просвет самого капилляра. Сотрудники лаборатории, которой руководит Линас, показали, что, в принципе, сделать все можно. Они вводили платиновые нанопровода в капилляры выбранных в качестве лабораторных образцов тканей и регистрировали возбуждение прилежащих нейронов [53] . Заряд быстро распределялся, и теперь исследователи надеются получить такие провода, которые могли бы проводить электроток нужной силы [54] .

Фактически, эта технология уже существует. Медики могут вводить длинную тонкую трубку через бедренную артерию, направляя ее затем в головной мозг – чтобы сделать инъекцию антиракового препарата прямо в область опухоли. Мы говорим о микрокатетерах, диаметр которых значительно превышает толщину нанопроводов, составляя от 0,5 до 1 миллиметра [55] . Однако ученые доказывают, что применение нанопроводников должно позволить проникнуть в мозг еще глубже. В статье, описывающей использование микрокатетеров, газета New York Times

приводит высказывание одного из медиков: «В техническом отношении нет препятствий к тому, чтобы достигнуть любой части мозга» [56] .

Конечно, любому из нас ясно, что введение в живой мозг множества нанопроводов чревато проблемами. Каким образом провести тысячи нанопроводников через все изгибы и сплетения капилляров? (Последние – так же искривлены и перекручены, как ветви баобаба). Как подвести каждый из нанопроводов к заданному месту? Что будет, если они перепутаются? Как предотвратить короткое замыкание при их возможном контакте? Как быть с тромбами в кровеносных сосудах? А вдруг проводок пройдет сквозь капиллярную стенку? Каким мыслится электропитание? Как я уже отметил, это очень смелая идея.

В сущности, все возражения подобного рода уже высказывались в 1970-х годах – в связи с кохлеарными имплантами. Критики доказывали: нет никакой возможности ввести электроды в узкую кохлеарную область – улитку внутреннего уха, «утопленную» в черепе на глубину полтора дюйма и размер которой не превышает горошины. Даже если нечто подобное и удастся, говорили они, то во влажной и соленой среде тела весьма вероятно короткое замыкание между электродами. А если получится преодолеть и эту проблему, настаивали противники имплантации, все равно нельзя будет компенсировать недостаток информации, который неизбежно проявится из-за потери 16 000 волосковых сенсорных клеток ( hair cells),

прежде передававших сигналы слуховым нервам. И потом: как, мол, будет функционировать электричество в устройстве, целиком расположенном внутри человеческого тела? А как добиться того, чтобы компьютер, размещенный внутри черепной коробки и связанный с электродами, имел необходимую производительность? (В ранних экспериментах для переведения звуковых сигналов в цифровую форму и передачи их на антенну импланта, разработчики использовали компьютеры размером с холодильный шкаф. Подопытные могли что-то слышать только сидя рядом с ними – да и то если были соединены с машиной специальным кабелем). Но несмотря ни на что все эти проблемы были решены в течение двух десятков лет. Сейчас, печатая этот тест, я слышу щелканье клавиатуры, тихое гудение кондиционера и легкие шорохи подушки за моей спиной.

Экстраполируя опыт создания кохлеарных имплантов, можно надеяться, что все препятствия на пути внедрения в жизнь устройств с нанопроводами будут преодолены. Вы только представьте: в головном мозге как будто начнет распускаться удивительный цветок – вытягиваясь на своем стебле и распространяясь все дальше. Это создание проникнет в каждый капилляр, в каждый кубический миллиметр мозга – и ежесекундно будет собирать терабайты данных. И столько же и с той же частотой станет посылать мозгу. Это будет самый интимный из всех когда-либо изобретавшихся людьми интерфейсов. Если теперь вы соедините два мозга, оснащенных подобными наноустройствами, то в буквальном смысле объедините их. Это будет точное подобие corpus callosum – мозолистого тела, соединяющего левое и правое полушария одного мозга (хотя, вероятно, связь будет осуществляться не по проводам, а посредством радиоволн). Если же после этого еще и связать людей с помощью Интернета, то возникнет сеть, каждый узел в которой будет человеческим мозгом. Всемирная Паутина

, World Wide Web, превратится в Сеть Всемирного Разума , World Wide Mind.

Однако риски действительно очень существенны. Прежде всего, использование электричества имеет фундаментальные ограничения. Но дело не только в этом. В каждом миллиметре мягких тканей мозга имеются тысячи нейронов – и каждый, обладая своей специализацией, настроен на решение лишь определенной задачи. Поэтому возбуждая не один, а несколько нейронов в пучке, электрический разряд вызовет побочные эффекты. В главе 8 я затрону вопрос о новых технологиях, которые должны действовать более селективно и бережно. Наиболее интересная из них способна использовать генетически измененные нейроны, контролировать активность которых будут светодиоды, размещенные в пространстве между черепной коробкой и головным мозгом. Такая технология предназначена для того, чтобы воспринимать возбуждение нейронов и контролировать их, совершенно не нуждаясь в проводах.

Перейти на страницу:

Похожие книги

14-я танковая дивизия. 1940-1945
14-я танковая дивизия. 1940-1945

История 14-й танковой дивизии вермахта написана ее ветераном Рольфом Грамсом, бывшим командиром 64-го мотоциклетного батальона, входившего в состав дивизии.14-я танковая дивизия была сформирована в Дрездене 15 августа 1940 г. Боевое крещение получила во время похода в Югославию в апреле 1941 г. Затем она была переброшена в Польшу и участвовала во вторжении в Советский Союз. Дивизия с боями прошла от Буга до Дона, завершив кампанию 1941 г. на рубежах знаменитого Миус-фронта. В 1942 г. 14-я танковая дивизия приняла активное участие в летнем наступлении вермахта на южном участке Восточного фронта и в Сталинградской битве. В составе 51-го армейского корпуса 6-й армии она вела ожесточенные бои в Сталинграде, попала в окружение и в январе 1943 г. прекратила свое существование вместе со всеми войсками фельдмаршала Паулюса. Командир 14-й танковой дивизии генерал-майор Латтман и большинство его подчиненных попали в плен.Летом 1943 г. во Франции дивизия была сформирована вторично. В нее были включены и те подразделения «старой» 14-й танковой дивизии, которые сумели избежать гибели в Сталинградском котле. Соединение вскоре снова перебросили на Украину, где оно вело бои в районе Кривого Рога, Кировограда и Черкасс. Неся тяжелые потери, дивизия отступила в Молдавию, а затем в Румынию. Последовательно вырвавшись из нескольких советских котлов, летом 1944 г. дивизия была переброшена в Курляндию на помощь группе армий «Север». Она приняла самое активное участие во всех шести Курляндских сражениях, получив заслуженное прозвище «Курляндская пожарная команда». Весной 1945 г. некоторые подразделения дивизии были эвакуированы морем в Германию, но главные ее силы попали в советский плен. На этом закончилась история одной из наиболее боеспособных танковых дивизий вермахта.Книга основана на широком документальном материале и воспоминаниях бывших сослуживцев автора.

Рольф Грамс

Биографии и Мемуары / Военная история / Образование и наука / Документальное