И вот главное: «сырьем» для производства таких предписаний оказываются привычные нам величины, такие как координаты и компоненты количества движения. Они получают новую жизнь в виде уже не обычных величин, принимающих те или иные числовые значения, а абстрактных явлений, распоряжающихся волновыми функциями. Превратим, например, координату x
в такое предписание. В качестве обозначений часто используются буквы со шляпками: предписание, «прародителем» которого была координата x, можно обозначить как . Итог его «разговора» с любой волновой функцией |q⟩ записывают просто как |q⟩ – это не умножение, а результат воздействия, какая-то новая волновая функция, которую предписание производит из попавшейся ему под руку волновой функции (состояния). Как же конкретно оно, это , действует на встречаемые им волновые функции? Рецепт прост, но эффективен. Сначала перечислим все возможные значения координаты x1, x2, x3, … (см. примечание 8 выше) и отвечающие им состояния |x1⟩, |x2⟩, |x3⟩, …. Как мы хорошо помним, каждое такое состояние, например |x222⟩, – это абстрактная конструкция; но при этом с каждым состоянием связано свое число (скажем, x222 = 0,031 нм в мимолетном примере выше). Предписание говорит, что состояние |x222⟩ следует просто умножить на число x222 (да, 0,031 нм в данном случае). Таким же точно образом надо поступить и в остальных случаях: состояние |x1⟩ следует умножить на отвечающее ему число x1, состояние |x2⟩ умножить на свое x2 и т. д. Это так и записывается: |x1⟩ = x1 · |x1⟩, и аналогично |x2⟩ = x2 · |x2⟩ и т. д. Казалось бы, ничего интересного, почти казуистика: чтобы узнать, как действует икс-со-шляпкой, смотрим на значение координаты, которое прячется внутри состояния, и умножаем состояние на это значение; стоило ли ради этого изобретать этот икс-со-шляпкой? Стоило, потому что он в действительности может намного большее: он уже знает, как применить себя ко всем остальным состояниям! Дело в том, что любое состояние можно записать в виде «длинной суммы с произведениями» a1 · |x1⟩ + a2 · |x2⟩ + a3 · |x3⟩ +… с какими-то числами a1, a2, a3 и т. д., а мы договорились, что каждое наше предписание снабжено рецептом раскрытия скобок: видя перед собой сумму волновых функций, оно набрасывается на каждое слагаемое по отдельности (а все получившееся следует потом сложить).По-прежнему первостепенно важное правило – раскрытие скобок
Правило раскрытия скобок, простое само по себе, оказалось на удивление мощным средством; это, по существу, главное свойство квантовой механики, и оно не в последний раз заявляет о себе на этой прогулке. При этом из каждой «длинной суммы» под действием предписания получается состояние, ничем не похожее на исходное: да, каждое слагаемое в сумме всего лишь умножается на некоторое число, но каждое – на свое
число! Если вы укоротили все ножки табуретки на трех ногах в одно и то же количество раз, то на ней по-прежнему можно сидеть, она просто станет более низкой, но если одну ножку вы укоротили в полтора раза, другую в два, а третью вообще удлинили на 10 % от ее первоначальной длины, то табуретку не так легко будет использовать по назначению. В «длинных суммах» число слагаемых существенно больше трех, и различные изменения в каждом из них изменяют всю сумму неузнаваемо.