Окинем еще раз взглядом стратегию квантования: каким же это магическим образом появляются дискретные значения энергии, которыми мы без особых объяснений, взаймы, пользовались на предыдущей прогулке – скажем, для электрона в атоме или для колебательных систем. Стартовые данные – это выражение для энергии: для энергии движения и для формы энергетической ямы (и для энергии взаимодействия между электронами, если их несколько). Пока все непрерывно, нет ни намека на дискретность. Ключевой шаг, и даже не шаг, а скачок, – изобрести волновые функции, а энергию превратить в предписание по изменению волновых функций – гамильтониан. Следующий шаг – найти те волновые функции, которые «максимально устойчивы» под действием гамильтониана, т. е. претерпевают всего лишь умножение на число. Это собственные состояния гамильтониана. Вместе с каждым собственным состоянием мы находим и то число, на которое собственное состояние умножается в результате применения гамильтониана, – это значения энергии E
, при которых уравнение только и имеет ненулевые решения для волновой функции. Математика, через которую пробивался Шрёдингер в самом конце 1925 г., показывает, что для электрона в яме, для колебательной системы и вообще во всех случаях «пойманного» движения таких значений энергии «мало» – они дискретны. Этим задача про дискретные значения энергии и решена: не предполагая никакой дискретности заранее, мы ее получили! Но можно сделать большее: увидеть, как возникает матричная механика Гайзенберга. Вообще любую волновую функцию можно записать в виде «длинной суммы с умножениями», выразив ее через собственные состояния гамильтониана. Но тогда всякое другое предписание по изменению волновых функций, например отвечающее количеству движения, полностью определяется тем, что оно делает с этими собственными состояниями, – а это в точности описывается гайзенберговской таблицей. Таким образом через область абстрактного и пролегла дорога от непрерывного к дискретному[258].Что делает
электрон в атоме? Реализует собственные состояния гамильтониана. А энергия – повышенная, правда, в ранг гамильтониана – и в самом деле правит миром.*****
Волновая функция в поисках реальности. От движения в том виде, как мы его хорошо знаем, среди окруживших нас абстракций осталось не так много. Координата и количество движения перестали быть просто числами и превратились в содержимое гайзенберговских таблиц или, что эквивалентно, в операторы, воздействующие на волновые функции, – какие уж тут траектории
! Волновые функции – абстрактные сущности, из которых операторы производят другие сущности того же сорта. Комбинация нескольких операторов, называемая гамильтонианом, становится двигателем эволюции – с помощью уравнения Шрёдингера предписывает, как волновым функциям меняться во времени. В такой эволюции волновых функций теперь и предлагается искать ответы на вопросы, которые в наивной форме звучали как «что, куда и как движется?». При этом, без сомнения, воодушевляет тот факт, что из уравнения Шрёдингера можно получать дискретные значения энергии стационарных состояний, которые и наблюдаются в жизни. Но что все-таки происходит в реальности? И как установить с ней контакт, если рассуждаем мы в терминах абстрактных волновых функций? От высоких абстракций пора каким-то образом спуститься к реалиям, в терминах которых мы понимаем происходящее в нашем обычном трехмерном пространстве.