поэтому новичкам данный материал излагается просто в виде набора некоторых правил. Однако иногда осуществляются попытки приведения доказательств и для важных правил, и следующий аргумент зачастую приводится для обоснования суждения о произведении двух отрицательных чисел. Данный аргумент нацелен на то, чтобы показать, что правило умножения отрицательных чисел является необходимым следствием правил умножения и сложения положительных чисел.
Приведенный выше четырехугольник имеет стороны а и Ь соответственно. Его площадь, согласно теореме планиметрии, равна ab. Площадь меньшего незаштрихованного прямоугольника со сторонами, равными (а – с) и (Ь – d) соответственно, равна (а – с)(Ь – d). Теперь выразим эту последнюю площадь в терминах большего прямоугольника и меньших заштрихованных прямоугольников. Анализ данной фигуры показывает, что площадь незаштрихованной фигуры может быть получена сначала путем вычитания из большого прямоугольника прямоугольника, который заштрихован вертикально (его площадь равна Ьс), а также горизонтально заштрихованного прямоугольника (его площадь равна ad), а затем путем прибавления прямоугольника, заштрихованного обоими способами (его площадь равна cd). Таким образом, мы можем записать уравнение 1:
Далее припишем а и Ь значение нуль. Тогда мы получим уравнение 2:
или уравнение 3:
В общем, заключением доказательства является положительное произведение двух отрицательных величин.
Является ли данное доказательство обоснованным? Читатель с легкостью увидит, что не является, поскольку уравнение 1 было развито на основе предположения, что а и Ь не равны нулю. Мы не можем получить уравнение 3 из уравнения 1, если не введем дополнительное допущение, что уравнение 1 будет истинным для всех возможных значений а и Ь. Однако это дополнение эквивалентно допущению о том, что все законы, распространяющиеся на сложение и умножение положительных чисел, также истинны и для отрицательных чисел. Но именно это суждение изначально и доказывалось.
На самом деле мы знаем, что правила оперирования отрицательных чисел независимы от правил оперирования положительных чисел. В очередной раз становится очевидной ценность разложения аргумента на составляющие его шаги. Точно так же как изучение допущений, требующихся для доказательства пятого постулата Евклида, привели Лобачевского и Больяя к открытию неевклидовых геометрий, так и исследование основополагающих правил алгебры привели сэра Уильяма Р. Гамильтона и Г. Г. Грассмана к открытию различных алгебраических систем. Без неевклидовых геометрий вряд ли было бы возможно развитие более сложной общей алгебры и современной физики. Важно отметить, что метод, требующий проявления всех требующихся для доказательства допущений, а также беспристрастные исследования всех альтернатив подобных допущений имеют далеко идущие следствия. Наилучший способ прояснить значимость логического метода для цивилизации – это задуматься о том, какую роль он сыграл в истории развития науки.Упражнения
Глава I. Предмет логики
1. Что из перечисленного ниже мы знаем непосредственно, а что с опорой на основания?
a. Существует центр Земли.
b. Существует король Италии.
c. Мы обладаем легкими, с помощью которых дышим.
d. Существует бельгийская колония Конго.