В 1895 г. по инициативе Клейна Гильберт был приглашен в Геттинген, и именно с Готтингеном неразрывно связана вся дальнейшая жизнь Гильберта. В 1930 г. Гильберт по возрасту оставил кафедру, кафедру, которую некогда занимали Гаусс и Риман.
Творчество Гильберта охватывало по существу всю математику. Он обычно выделял одну область, в которой сосредоточенно и целеустремленно работал в течение нескольких лет, а затом переходил к другой; таким путем Гильберт стал мате-матпком-упиверсалом. Академик А. Н. Колмогоров намечает восемь таких периодов: теория инвариантов (1885—1893), теория алгебраических числовых полей (1893— 1898), основания геометрии (1898—1902), проблемы вариационного исчисления и дифференциальных уравнений (1900—1906)* интегральные уравнения (1900—1910), решение уравнения Варинга в теории чисел (1908—1909), математическая физика (1910—1922) и, наконец, логические основы математики (1922—1939). В работах по основаниям математики Гильберт считал возможным достичь непротиворечивого обоснования математики на основе канторовой теории множеств. Убеждение Гильберта привело к возникновению так называемого формалистического направления в математике. Однако последующие работы Геделя по логической незамкнутости арифметики сильно поколебали веру в этот подход.
Быть может, еще большее значение, чем собственные перворазрядные творческие достижения Гильберта, имело влияние стиля его мышления, те требования ясности и определенности результатов, которые он ставил, то сочетание простоты и строгости, которых он добивался от своих учеников.
Гильберт возглавил обширную школу, оказавшую сильное влияние на всю мате* матику и физику начала XX века. После прихода к власти Гитлера «чистка» германских университетов больше всего коснулась учеников Гильберта. Вейль и Курант покинули родину, другие потеряли свое место, некоторые погибли в концлагерях. Последние годы жизни для Гильберта были трагическими годами одиночества; на его глазах разрушалась германская культура, блестящим представителем которой он был. Гильберт умер в Геттингене на 81-м году жизни; на его могиле написано:
Wir miissen wissen
Wir werden wissen
приводим вступительную часть речи Гильберта на II Международном съезде математиков в Париже в 1900 г. В этой знаменитой речи Гильберт сформулировал 23 проблемы. Последующее развитие математики показало всю глубину его интуицпп и понимания путей развития математики. Мы приводим также предисловие к «Основаниям геометрии» (1930), первоначально вышедшим в 1899 г.
Кто из нас не хотел бы приоткрыть завесу, за которой скрыто наше будущее, чтобы хоть одним взглядом проникнуть в предстоящие успехи нашего знания и тайны его развития в ближайшие столетия? Каковы будут те особые цели, которые поставят себе ведущие математические умы ближайшего поколения? Какие новые методы и новые факты будут открыты в новом столетии на широком и богатом поле математической мысли?
История учит, что развитие науки протекает непрерывно. Мы знаем, что каждый век имеет свои проблемы, которые последующая эпоха или .решает, или отодвигает в сторону как бесплодные, чтобы заменить их новыми. Чтобы представить себе возможный характер развития математического знания в ближайшем будущем, мы должны перебрать в нашем воображении вопросы, которые еще остаются открытыми, обозреть проблемы, которые ставит современная наука и решения которых мы ждем от будущего. Такой обзор проблем кажется мне сегодня, на рубеже нового столетия, особенно своевременным. Ведь большие даты не только заставляют нас оглянуться на прошедшее, но и направляют нашу мысль в неизвестное будущее.
Невозможно отрицать глубокое значение, какое имеют определенные проблемы для продвижения математической науки вообще, и важную роль, которую они играют в работе отдельного исследователя. Всякая научная область жизнеспособна, пока в ней избыток новых проблем. Недостаток новых проблем означает отмирание или прекращение самостоятельного развития. Как вообще каждое человеческое начинание связано с той или иной целью, так и математическое творчество связано с постановкой проблемы. Сила исследователя познается в решении проблем: он находит новые методы, новые точки зрения, он открывает более широкие и свободные горизонты.
Трудно, а часто и невозможно заранее правильно оценить значение отдельной задачи; ведь в конечном счете ее ценность определится пользой, которую она принесет науке. Отсюда возникает вопрос: существуют ли общие признаки, которые характеризуют хорошую матемдтическую проблему? ^