Читаем Жизнь науки полностью

После того как мы рассмотрели общее значение проблемы в математике, обратимся к вопросу о том, из какого источника математика черпает свои проблемы. Несомненно, что первые и самые старые проблемы каждой математической области знания возникли из опыта и поставлены над миром внешних явлении. Даже иршикп счета с целыми числами были открыты на этом пути еще на ранней ступени культурного развития человечества так же, как и теперь ребенок познает применение этих правил эмпирическим методом. То же относится к

первым проблемам геометрии — пришедшим к нам из древности задачам удвоения куба, квадратуры круга, а также к старейшим проблемам теории численных уравнений, теории кривых, дифференциального и интегрального исчислений, вариационного исчисления, теории рядов Фурье и теории потенциала, но говоря уже о всем богатстве проблем собственно механики, астрономии и физики.

При дальнейшем развитии какой-либо математической дисциплины человеческий ум, обнадеженный удачами, проявляет уже самостоятельность; он сам ставит новые и плодотворные проблемы, часто без заметного влияния внешнего мира, с помощью только логического сопоставления, обобщения, специализирования, удачного расчленения и группировки понятий и выступает затем сам на первый план как постановщик задач. Так возникли задача о простых числах

и другие задачи арифметики, теория Галуа, теория алгебраических инвариантов, теория абелевых и автоморфных функций и так возникали почти все тонкие вопросы современной теории чисел и теории функций.

А между тем во время действия созидательной силы чистого мышления внешний мир снова настаивает на своих правах: он навязывает нам своими реальными фактами новые вопросы и открывает нам новые области математического знания. И в процессе включения этих новых областей знания в царство чистой мысли мы часто находим ответы на старые нерешенные проблемы и таким путем наилучшпм образом продвигаем вперед старые теории. На этой постоянно повторяющейся и сменяющейся игре между мышлением и опытом, мне кажется, и основаны те многочисленные и поражающие аналогии и та кажущаяся предустановленная гармония, которые математик так часто обнаруживает в задачах, методах и понятиях различных областей знания.

Остановимся еще кратко на вопросе о том, каковы могут быть общие требования, которые мы вправе предъявить к решению математической проблемы. Я имею в виду прежде всего требования, благодаря которым удается убедиться в правильности ответа с помощью конечного числа заключений и притом на основании конечного числа предпосылок, которые кладутся в оспову каждой задачи и которые должны быть в каждом случае точно сформулированы. Это требование логической дедукции с помощью конечного числа заключений есть не что иное, как требование строгости проведения доказательств. Действительно, требование строгости, которое в математике уже вошло в поговорку, соответствует общей философской потребности нашего разума; с другой стороны, только выполнение этого требования приводит к выявлению полного значения существа задачи и ее плодотворности. Новая задача, особенно если она вызвана к жизни явлениями внешнего мира, подобна молодому побегу, который может расти и приносить плоды, лишь если он будет заботливо и по строгим правилам искусства садоводства взращиваться на старом стволе — твердой основе нашего математического знания.

Будет большой ошибкой думать при этом, что строгость в доказательстве — это враг простоты. Многочисленные примеры убеждают нас в противоположном: строгие методы являются в то же время простейшими и наиболее доступными. Стремление к строгости как раз и приводит к отысканию простейших доказательств. Это же стремление часто прокладывает путь к методам, которые оказываются более плодотворными, чем старые менее строгие методы. Так, теория алгебраических кривых благодаря более строгим методам теории функций комплексного переменного и целесообразному применению трансцендентных средств значительно упростилась и приобрела большую цельность. Далее, доказательство правомерности применения четырех элементарных арифметических действий к степенным рядам, а также почленного дифференцирования и интегрирования этих рядов и основанное на этом признание степенного ряда, несомненно, значительно упростили весь анализ, в частности, теорию исключения и теорию дифференциальных уравнений (вместе с ее теоремами существования).

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Мозг и его потребности. От питания до признания
Мозг и его потребности. От питания до признания

Написать книгу, посвященную нейробиологии поведения, профессора Дубынина побудил успех его курса лекций «Мозг и потребности».Биологические потребности – основа основ нашей психической деятельности. Постоянно сменяя друг друга, они подталкивают человека совершать те или иные поступки, ставить цели и достигать их. Мотиваторы как сиюминутных, так и долгосрочных планов каждого из нас, биологические потребности движут экономику, науку, искусство и в конечном счете историю.Раскрывая темы книги: голод и любопытство, страх и агрессия, любовь и забота о потомстве, стремление лидировать, свобода, радость движений, – автор ставит своей целью приблизить читателя к пониманию собственного мозга и организма, рассказывает, как стать умелым пользователем заложенных в нас природой механизмов и программ нервной системы, чтобы проявить и реализовать личную одаренность.Вы узнаете:• Про витальные, зоосоциальные и потребности саморазвития человека.• Что новая информация для нашего мозга – это отдельный источник положительных эмоций.• Как маркетологи, политики и религиозные деятели манипулируют нами с помощью страха. Поймете, как расшифровывать такие подсознательные воздействия.

Вячеслав Альбертович Дубынин , Вячеслав Дубынин

Научная литература / Научно-популярная литература / Образование и наука