Но особенно разительный пример, иллюстрирующий мою мысль, представляет вариационное исчисление. Исследование первой и второй вариаций определенного интеграла приводило к крайне сложным вычислениям, а соответствующие исследования старых математиков были лишены необходимой строгости. Вейерштрасс указал нам путь к новому и вполне надежному обоснованию вариационного исчисления. На примере простого и двойного интеграла я вкратце намечу в конце моего доклада, как следование этому пути приводит в то же время к поразительному упрощению вариационного исчисления вследствие того, что для установления необходимых и достаточных критериев максимума и минимума становится излишним вычисление второй вариации и даже частично отпадает необходимость в утомительных умозаключениях, относящихся к первой вариации. Я уже не говорю о тех преимуществах, которые возникают оттого, что исчезает надобность рассматривать лишь те вариации, для которых значения производных функций меняются незначительно.
Предъявляя к полному решению проблемы требование строгости в доказательстве, я хотел бы, с другой стороны, опровергнуть мнение о том, что совершенно строгие рассуждения применимы только к понятиям анализа или даже одной лишь арифметики. Такое мнение, поддерживаемое иногда и выдающимися умами, я считаю совершенно ложным. Такое одностороннее толкование требования строгости быстро приводит к игнорированию всех понятий, возникших из геометрии, механики, физики, приостанавливает приток нового материала из внешнего мира и, в конце концов, приводит даже к отбрасыванию понятия континуума и иррационального числа. А существует ли более важный жизненный
нерв, чем тот, который был бы отрезан от математики, если из нее изъять геометрию и математическую физику? Я, напротив, считаю, что всякий раз, когда математические понятия зарождаются со стороны теории познания или в геометрии, или в естественнонаучных теориях, перед математикой возникает задача исследовать принципы, лежащие в основе этих понятий, и так обосновать эти понятия с цомощью полной и простой системы аксиом, чтобы строгость новых понятий и их применимость к дедукции ни в какой мере не уступали старым арифметическим понятиям.
К новым понятиям относятся также новые обозначения. Мы их выбираем таким образом, чтобы они напоминали те явления, которые послужили поводом для образования этих понятий. Так, геометрические фигуры являются образами для напоминания пространственных представлений и в качестве таковых применяются всеми математиками. Кто не связывает с двумя неравенствами
Арифметические знаки — это записанные геометрические фигуры, а геометрические фигуры — это нарисованные формулы, и никакой математик не мог бы обойтись без этих нарисованных формул, так же как и не мог бы отказаться при счете от заключения в скобки или их раскрытия или применения других аналитических знаков.
Применение геометрических фигур в качестве строгого средства доказательства предполагает точное знание и полное владение темп аксиомами, которые лежат в основе теории этих фигур, и поэтому для того, чтобы эти геометрические фигуры можно было включить в общую сокровищницу математических знаков, необходимо строгое аксиоматическое исследование их наглядного содержания. Подобно тому как при сложении двух чисел нельзя подписывать цифры слагаемых в неверном порядке, а нужно строго следовать правилам, т.е. тем аксиомам арифметики, которым подчиняются арифметические действия, так и операции над геометрическими образами определяются теми аксиомами, которыо лежат в основе геометрических понятий и связей между ними.